
BASIC5 strings
BY FR. THOMAS MCGAHEE

HI! WHAT'S YOUR NAME?? MARVIN GOLDFISH
NICE TO MEET YOU, MARVIN GOLDFISH
DO YOU HAVE ANY HOBBIES?? WHAT ARE THEY???
SWIMMING UNDERWATER
REALLY!!! I KNEW A GUY WHO LIKED SWIMMING UNDERWATER
BUT HE WASN'T TOO GOOD AT DOING ANYTHING.
WHO IS YOUR BEST FRIEND? JOHNNY FLOUNDER
DOES JOHNNY FLOUNDER LIKE SWIMMING UNDERWATER LIKE YOU?
WELL, MARVIN GOLDFISH IT'S BEEN NICE TALKING TO YOU.
I HOPE YOU COME BACK AND TALK WITH ME AGAIN SOMETIME.
BRING YOUR FRIEND, JOHNNY FLOUNDER WITH YOU.

Many SOL 20 owners have suffered along without string
capabilities while waiting delivery of Processor Tech's 8K
BASIC. But Father McGahee found time to write a string
handler for BASIC5, so as to give his students capabilities for
conversational-type programs such as the one illustrated on
this page.

Our school recently purchased a SOL 20 from Processor
Tech. I assembled it, and we are now using it in our
computer course here at Don Bosco Tech. We have the 8K
BASIC on order, but while we are waiting for that we have
been happily programming away using BASIC5. One of the
things that BASIC5 is missing is strings. Too bad, 'cause
strings are lots of fun to use in programs to provide a more
conversational feedback and `personal' sounding program.

I finally had a few free moments the other day (I teach
electronics and computer programming at Don Bosco, and am
kept fairly busy!!), and I wrote up this short string-handler
which makes use of the machine language CALL instruction
in BASIC5. It is by no means an optimum implementation,
but provides a reasonable flexibility. I will be doing up a
more useful version soon, but in the meantime I figured
maybe the guys and gals at PCC might be interested in this
first version. I guess there are a lot of SOLs out there with
BASIC5, and not all of the users are capable of doing up their
own string handlers... so they might like to try this one out
until something better comes along.

I assembled my particular version starting at 4000 hex (16384
decimal). The assembler used was the ALS-8 from Processor
Tech. I tried to keep things simple. To input an ASCII string
the user does a CALL to ASCIN. This routine starts storage
at the next available location in the text storage area, which is
pointed to by LAST. It duplicates this address in BEG (for
BEGINNING) for later use in setting the BC registers prior to
a return to BASIC. I use the SOLOS input routine at 0C01F
to get keyboard input, then I strip off the MSB (parity bit)
since otherwise TTYs might give us codes different from
some keyboards. The ASCII is then stored in memory and
the current address updated to point to the next available
location. At this time (before any echoing), a check is done to
see if the ASCII character was a Line Feed (LF). I use the
line feed as a terminator rather than Carriage Return (CR),
because this allows the user to input extremely long strings,
such as entire poems and the like!! If it was not a LF then the
character is placed in the B register and echoed using the
SOLOS routine at 0C019. Since the echo causes the A
register to be changed, but B still has the ASCII code, we
copy B into A so we can perform comparisons. A CR will
result in a CR, LF, and one NULL being sent out. If the user
has made a mistake, he may type in a DELETE, which will
cause the program to back up the memory to the proper place.
Input continues uninterrupted until a Line Feed is finally
typed.

When input is done, the present address (next empty location)
is stored in LAST so the next time ASCIN is used it will start
off at the right place. The ORIGINAL BEGINNING of the
present text string is then recovered from BEG and
transferred to the B and C registers, since the BASIC CALL
instruction uses these registers for transferring data between
BASIC5 and the machine language routines. Then there is a
RETurn to BASIC5. You will notice that there is a special
entry point labeled INIT. Upon entry here the DONE portion
of ASCIN is used to reset the address pointers to the
beginning of the text storage area. This entry point can be
used at the beginning of a BASIC program to 'clear' the string
storage area. (Notice that it does not erase anything... it
merely allows us to recycle storage space to conserve
memory.)

The ASCII output routine operates by taking the address
found in the B and C registers and setting that up as the
current address for memory. (The B and C registers are
loaded with the address prior to the BASIC CALL using the
ARG instruction. . . see sample program for details). The
program now starts extracting ASCII characters one at a time
and printing them. A CR will again result in a CR, LF, and
NULL, using the same subroutine used during input. When a
Line Feed is finally encountered, there is a RETurn to
BASIC5. The Line Feed is NOT printed.

Three NOPs in the storage area are not necessary. I had them
there to allow for quick `patches' should the need arise. It
also prevents destruction of the program should too many
DELETES be accidentally entered. One of the changes that I
am making in the new version is a check to make sure the
user does not delete beyond the BEGinning of the current
string being input!!

The BASIC5 sample program listing shows one way of
implementing strings using this machine language program
and CALLs. The user must first load this string handler
using SOLOS. What I am doing at present is have my
students write three short subroutines in BASIC up at the
high end, say at 10000, 20000, and 30000. These subroutines
contain the necessary CALL and ARG statements to access
the string handler. This way, instead of trying to remember
the addresses needed for the CALL statements, all the student
need remember is that GOSUB 10000 inputs a string,
GOSUB 20000 extracts a string, and GOSUB 30000 resets
the string storage area.

I have further chosen to arbitrarily use Z as the variable name
under which all ARG and CALL transfers take place. This
simplifies writing BASIC programs using the string handler,
since there is only one variable name to be remembered. For
example, to input a string which is to store a person's name,
you can simply say: GOSUB 10000: N=Z. This inputs the
string and stores the address of the string in variable N. To

recover this specific string, simply: LET Z=N: GOSUB 20000
and the string is printed out!

One caution: no leading and trailing spaces are imbedded into
the string unless the user enters them himself. What this
means is that if you do not provide such spaces yourself inside
the BASIC PRINT statements that may surround the output
strings, you may find that the string is printed with no
intervening spaces, and that looks messy. If you find this a
bother, then modify the program to add such spaces
automatically. On the other hand, I use the fact that there are
no spaces to good advantage in a game where the user puts in

a bunch of technical words, and then the program combines
them in various ways to form some long technical-looking,
mind-bending words.

In any case, the program is simple enough to be easily
expanded. I can't wait to get my hands on Processor Tech's
8K BASIC, but in the meantime at least I have a limited
string capability to play around with. Incidentally, I find the
string handler useful for programs other than BASIC. As
with anything, the uses are as broad as the user's imagination!
So imagine to your heart's content, and have fun!

10 GOSUB 30000: REM * CLEAR STRING STORAGE AREA
20 PRINT "HI! WHAT'S YOUR NAME?? ";: GOSUB 10000: N=Z
25 PRINT
30 PRINT "NICE TO MEET YOU. ";: Z=N: GOSUB 20000
35 PRINT
40 PRINT "DO YOU HAVE ANY HOBBIES?? WHAT ARE THEY???"
50 GOSUB 10000: H=Z
55 PRINT
60 PRINT "REALLY!!! I KNEW A GUY WHO LIKED ";: Z=H: GOSUB 20000
65 PRINT
70 PRINT "BUT HE WASN'T TOO GOOD AT DOING ANYTHING."
80 PRINT "WHO IS YOUR BEST FRIEND? ";: GOSUB 10000: F=Z
85 PRINT
98 PRINT "DOES ";: Z=F: GOSUB 20000: PRINT " LIKE ";
95 Z=H: GOSUB 20000: PRINT " LIKE YOU?"
100 PRINT "WELL. ";: Z=N: GOSUB 20000
110 PRINT " IT'S BEEN NICE TALKING TO YOU."
120 PRINT "I HOPE YOU COME BACK AND TALK WITH ME AGAIN SOMETIME."
130 PRINT "BRING YOUR FRIEND. ";: Z=F: GOSUB 20000: PRINT " WITH YOU."
140 PRINT : END
10000 Z=CALL(16384): RETURN
20000 Z=ARG(Z): Z=CALL(16442): RETURN
30000 Z=CALL(16430): RETURN

4000 0010 * MACHINE LANGUAGE ROUTINES TO ADD STRINGS
4000 0020 * TO BASIC5 VIA "CALL" INSTRUCTIONS.
4000 0025 * WRITTEN BY FR. THOMAS MCGAHEE
4000 0030 * ELECTRONICS AND COMPUTER INSTRUCTOR
4000 0035 * DON BOSCO TECH, PATERSON, NEW JERSEY 07502
4000 0040 *
4000 0100 *** ASCII INPUT WITH ECHO.
4000 2A 5A 40 0105 ASCIN LHLD LAST RECOVER ADDRESS
4003 22 5C 40 0110 SHLD BEG STORE FOR LATER USE
4006 CD 1F C0 0115 INP CALL 0C01FH GET A CHARACTER
4009 CA 06 40 0120 JZ INP CHECK STATUS
400C E6 7F 0122 ANI 7FH MASK PARITY BIT
400E 77 0125 MOV M,A STORE IN MEMORY
400E 23 0126 INX H UPDATE CURRENT ADDRESS
4010 FE 0A 0127 CPI 0AH IF A LINE FEED...
4012 CA 31 40 0128 JZ DONE ...PREPARE TO RETURN
4015 47 0130 MOV B,A PUT IT IN B FOR SOLOS...
4016 CD 19 C0 0135 CALL 0C019H ...SO IT CAN ECHO IT
4019 78 0140 MOV A,B IN "A" FOR COMPARES
401A FE 0D 0150 CPI 0DH IF A CARRIAGE RETURN...
401C CC 4E 40 0155 CZ CR ...THEN DO LF AND NULL
401E FE 7F 0170 CPI 7FH "DELETE" NEEDS HELP

4021 C2 06 40 0175 JNZ INP BACK FOR MORE!
4024 06 01 0185 MVI B,01H ...B HAS BACKSPACE...
4026 CD 19 C0 0190 CALL 0C019H ...PRINT A BACKSPACE
4029 2B 0192 DCX H DOUBLE DECREMENT...
402A 2B 0193 DCX H ...CLEARS BAD DATA
4028 C3 06 40 0195 JMP INP ...AND GET MORE!
402E 0197 *
402E 21 63 40 0200 INIT LXI H,TXT *RESET POINTERS
4031 0203 *
4031 22 5A 40 0205 DONE SHLD LAST SAVE FOR NEXT TIME
4034 2A 5C 40 0210 LHLD BEG GET "ORIGINAL" ADDRESS..
4037 44 0215 MOV B,H ...AND STORE IN B,C
4038 4D 0220 MOV C,L ...FOR BASIC5 LINKAGE
4039 C9 0225 RET BYE-BYE!
403A 0227 *
403A 0230 ***ROUTINE TO OUTPUT STORED ASCII STRINGS
403A 60 0235 ASCIO MOV H,8 TRANSFER ADDRESS ...
4038 69 0240 MOV L,C ...IN B,C TO H,L
403C 7E 0245 OUT MOV A,M GET STORED CHARACTER
403D 47 0250 MOV B,A STORE IN B FOR NOW
403E FE 0A 0255 CPI 0AH LF NOT PRINTED
4040 C8 0260 RZ LF MEANS GO HOME!
4041 CD 19 C0 0265 CALL 0C019H PRINT CHARACTER
4044 23 0270 INX H SET NEW ADDRESS
4045 78 0275 MOV A,B NEED IT IN "A"
4046 FE 0D 0280 CPI 0DH CR NEEDS HELP
4048 CC 4E 40 0285 CZ CR SO HANDLE IT WITH CARE
4048 C3 3C 40 0290 JMP OUT GO FOR MORE OUTPUT
404E 06 0A 0295 CR MVI B,0AH WITH A CR YOU GET...
4050 CD 19 C0 0300 CALL 0C019H ...A FREE LINE FEED...
4053 06 00 0305 MVI B,00H ...AND A FREE NULL...
4055 CD 19 C0 0310 CALL 0C019H ...TO ALLOW CLEAN I/O
4058 78 0320 MOV A,B NO TRASH, PLEASE
4059 C9 0325 RET THAT'S ALL, FOLKS!
405A 0326 *
405A 0327 * STORAGE AREA FOLLOWS
405A 63 40 0330 LAST DW TXT STORAGE
405C 63 40 0335 BEG DW TXT STORAGE
405E 00 0340 NOP FREE LOCATION
405E 00 0345 NOP FREE LOCATION
4060 00 0350 NOP FREE LOCATION
4061 00 0355 NOP FREE LOCATION
4062 00 0360 NOP FREE LOCATION
4063 00 0365 TXT DB 00H TEXT STORAGE BEGINS

ASCIN 4000
ASCIO 403A
BEG 405C 0110 0210
CR 404E 0155 0285
DONE 4031 0128
INIT 402E
INP 4006 0120 0175 0195
LAST 405A 0105 0205
OUT 403C 0290
TXT 4063 0200 0330 0335

4000: 2A 5A 40 22 5C 40 CD 1F C0 CA 06 40 E6 7F 77 23
4010: FE 0A CA 31 40 47 CD 19 C0 78 FE 0D CC 4E 40 FE
4020: 7F C2 06 40 06 01 CD 19 C0 2B 2B C3 06 40 21 63
4030: 40 22 5A 40 2A 5C 40 44 4D C9 60 69 7E 47 FE 0A
4040: C8 CD 19 C0 23 78 FE 0D CC 4E 40 C3 3C 40 06 0A
4050: CD 19 C0 06 00 CD 19 C0 78 C9 63 40 63 40 00 00
4060: 00 00 00 00

