

Extended Cassette

BASIC
USER'S MANUAL

Processor Technology
Corporation

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (C) 1977 by Processor Technology Corporation
First Printing, January, 1978

Manual Part No. 727018
All rights reserved.

i

TABLE OF CONTENTS
PAGE

1. INTRODUCTION ... 1-1

1.1 HOW TO USE THIS BOOK..................................... 1-2
1.2 SYSTEM REQUIREMENTS...................................... 1-3

2. ELEMENTS OF BASIC USAGE....................................... 2-1

2.1 HOW TO INITIALIZE AND LEAVE BASIC........................ 2-1
2.2 DEFINITIONS OF COMMANDS AND STATEMENTS................... 2-3

2.3.1 Constants ... 2-4
2.3.2 Variables ... 2-5
2.3.3 Expressions 2-5

2.4 DEFINITION OF A PROGRAM.................................. 2-6
2.5 THE CALCULATOR MODE OF BASIC............................. 2-6

3. HOW TO CREATE, EDIT, EXECUTE, AND SAVE A PROGRAM.............. 3-1

3.1 CREATING A PROGRAM....................................... 3-1
3.2 COMMANDS TO AID IN CREATING A PROGRAM.................... 3-2

LIST, DEL, SCRATCH, REN, EDIT
3.3 EXECUTING A PROGRAM...................................... 3-7

RUN, CONT, CLEAR
3.4 SAVING A PROGRAM ON TAPE AND RETRIEVING IT............... 3-9

3.4.1 About Cassette Recorders 3-9
3.4.2 Text And Semi-Compiled Modes of Program Storage ... 3-11
3.4.3 Reading Or Writing on Tape 3-11

SAVE, GET, XEQ, APPEND

4. A BEGINNER'S SET OF BASIC STATEMENTS.......................... 4-1
REM, LET

4.1 GETTING DATA INTO AND OUT OF THE PROGRAM................. 4-2
INPUT, PRINT

4.2 RETRIEVING DATA FROM WITHIN A PROGRAM.................... 4-5
READ, DATA, TYP(0), RESTORE, ON...RESTORE

4.3 STOPPING OR DELAYING EXECUTION........................... 4-8
END, STOP, PAUSE

4.4 EXECUTION CONTROL.. 4-10
TO TO, ON...GO TO, FOR and NEXT, EXIT,
ON...EXIT

4.5 EXPRESSION EVALUATION.................................... 4-15

4.5.1 Arithmetic Operators 4-16
4.5.2 String Operator 4-16
4.5.3 Relational Operators 4-16
4.5.4 Logical Operators 4-17
4.5.5 Logical And Relational Operations in

Algebraic Computations 4-18
4.5.6 Evaluating Expressions in IF Statements 4-18

IF

ii

TABLE OF CONTENTS (Continued)
PAGE

5. ADVANCED BASIC.. 5-1

5.1 SUBROUTINES.. 5-1
GOSUB, RETURN, ON...GOSUB

5.2 FUNCTIONS.. 5-4

5.2.1 General Mathematical Functions 5-5
ABS, EXP, INT, LOG, LOGIC,
RND, SQR, SGN

5.2.2 Trigonometric Functions 5-6
SIN, COS, TAN, ATN

5.2.3 User-Defined Functions 5-6
DEF, FNvar

5.3 CHARACTER STRINGS.. 5-9

5.3.1 String Constants 5-9
5.3.2 String Variables 5-10
5.3.3 String Expressions 5-10

DIM, SEARCH
5.3.4 String Functions 5-12

Substring, LEN, ASC and CHR,
VAL and STR, ERR(0)

5.4 DIMENSIONED VARIABLES.................................... 5-16
DIM, FREE(0)

5.5 USING CASSETTE TAPE FOR DATA STORAGE..................... 5-18
FILE, PRINT, READ, REWIND, CLOSE,
TUOFF and TUON, EOF

5.6 CONTROLLING THE FORMAT OF NUMERIC OUTPUT................. 5-24
Formatted PRINT

5.7 CONTROLLED INPUT... 5-28
Controlled INPUT

5.8 ERROR CONTROL.. 5-30
ERRSET and ERRCLR, ON...ERRSET, ERR(0)

5.9 COMMANDS CAN BE STATEMENTS AND STATEMENTS COMMANDS....... 5-31

5.9.1 The SET Commands 5-31
SET DS, SET IP, SET OP,
SET DB, SET LL, SET ML

5.9.2 BYE and SCRATCH Commands 5-32

5.10 CURSOR CONTROL... 5-32
CURSOR, POS(0)

6. MACHINE LEVEL INTERFACE....................................... 6-1

6.1 WRITING TO A PORT OR MEMORY LOCATION..................... 6-2
POKE and OUT, PEEK and INP, CALL, WAIT

7. MATRIX OPERATIONS... 7-1

7.1 MATRIX INITIALIZATION.................................... 7-2
7.2 MATRIX COPY.. 7-3

iii

TABLE OF CONTENTS (Continued)

PAGE
7.3 SCALAR OPERATIONS.. 7-3
7.4 MATRIX ARITHMETIC OPERATIONS............................. 7-4
7.5 MATRIX FUNCTIONS... 7-4
7.6 REDIMENSIONING MATRICES.................................. 7-5

APPENDICES

APPENDIX 1 EXTENDED BASIC COMMAND AND STATEMENT AND INDEX

APPENDIX 2 EXTENDED BASIC FUNCTION SUMMARY AND INDEX

APPENDIX 3 ERROR MESSAGES

APPENDIX 4 TABLE OF ASCII CODES (Zero Parity)

APPENDIX 5 HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

APPENDIX 6 BIBLIOGRAPHY

iv

IMPORTANT NOTICE

This copyrighted software product is distributed on an individual
sale basis for the personal use of the original purchaser only. No
license is granted herein to copy, duplicate, sell, or otherwise
distribute to any other person, firm, or entity. This software
product is copyrighted and all rights are reserved; all forms of
the program are copyrighted by Processor Technology Corporation.

1-1 BASIC

SECTION 1

1. INTRODUCTION

Extended BASIC is a special adaptation of BASIC (Beginner's
All-purpose Symbolic Instruction Code) for the SOL with a SOLOS
personality module or for other 8080-based computers with CUTER and
the P.T. CUTS module. BASIC was selected for adaptation because it
is simple and easy to learn while providing the powerful capabilities
of a high-level language. Thus, it is ideal for the user who is a
novice at using programming languages as well as for the advanced
user who wants to work with subroutines, functions, strings, and
machine-level interfaces.

Some of the outstanding features available in Extended BASIC are:

*Fully-formatted output to a variety of devices
*Many function subprograms, including mathematical, string, and video
functions

*Program and data storage on cassette tape
*Full eight-digit precision
*User-defined functions on one or more lines
*Calculator mode for immediate answers
*Moving-cursor editing on video displays
*Complete capability for string handling
*Functions and statements for communicating with any number of
input/output channels

*Ability to view memory locations, change values, and branch to
absolute addresses

*DATA files
*Matrix functions including INVert

BASIC is a conversational language, which means that you can engage
in a dialog with BASIC by typing messages at a terminal and receiving
messages from a display device. For example:

BASIC: READY -BASIC indicates it is ready to receive
 instructions.

User: 10 PRINT "WHAT IS THE VALUE OF X" <CR> -The user enters
20 INPUT X <CR> the lines of a program,
30 LET Y = X^3 <CR> each followed by a
40 PRINT "X CUBED I5 ";X^3 <CR> carriage return.
DEL 30 <CR> -The user deletes line 30.
LIST <CR> -The user tells BASIC to

 list what has been typed.

1-2 BASIC

BASIC: 10 PRINT "WHAT IS THE VALUE OF X" -BASIC list all but
20 INPUT X line 30, which was
40 PRINT "X CUBED IS ";X^3 deleted.

User: RUN <CR> -The user tells BASIC to
 execute the program.

BASIC: WHAT IS THE VALUE OF X
User: ?3 <CR> -The user types 3 in
BASIC: X CUBED IS 27 response to the ? prompt.

READY

1.1. HOW TO USE THIS BOOK

This book is intended as a description of this particular version of
BASIC, namely Extended Cassette BASIC. Several useful beginning
books are listed in Appendix 6 for those who need more background.

Read this book from cover to cover first, as a text. The material is
presented in increasing difficulty from front to back. After you are
familiar with Extended BASIC, you can use the book as a reference.
In addition, statement and command summaries are given in Appendix 1.
Appendix 2 is a function summary.

Section 2 gives background information needed for working with BASIC.
It presents the fundamental definitions and modes of operation, and
tells how to initialize and leave BASIC.

Section 3 describes the mechanics of writing BASIC programs,
executing them, saving programs on tape, and retrieving them at the
appropriate time.

Section 4 describes an introductory set of statements, the
instructions that make up a BASIC program. The statements described
in section 4 are the simplest in the language, but they can be used
to solve many math and business applications.

Section 5 is referred to as "Advanced BASIC," but do not be taken
aback by the term "advanced." All of BASIC is, as the name implies,
relatively simple to learn. Section 5 merely goes further into the
language by teaching the use of subroutines and functions, how to
work with strings of characters, saving data on tape, and formatting
output data.

Section 6 is for specialists. Those of you who have expanded your
computer to send and receive data at a number of input/ output ports
will be interested in reading about the machine-level interfaces of
BASIC.

Section 7 involves special statements, preceded by MAT, which involve
the manipulation of matrices (two-dimensional arrays).

1-3 BASIC

The symbols below are used in examples throughout this document:

<CR> The user depresses the carriage return key.
<LF> The user depresses the line feed key.

Command and statement forms use upper- and lowercase characters to
differentiate between characters to be typed literally and terms
indicating the types of information to be inserted. For example, the
following command form indicates that the word LIST should be typed
followed by a number selected by the user:

LIST n

Punctuation in command and statement forms should be interpreted
literally. For example, the statement form below indicates that the
word INPUT should be followed by one or more variable names separated
by commas:

INPUT var1, var2, ...

The elipses indicate an indefinite number of arguments.

Optional parts of command and statement forms are enclosed in braces.
For example, the form SCRATCH} indicates that both SCR and SCRATCH
are valid forms of the command. The form Execute indicates that only
the first two characters need be typed.

1.2. SYSTEM REQUIREMENTS

Extended BASIC must be used in conjunction with the SOLOS or CUTER
monitor programs, both products of Processor Technology. These
programs reside in approximately 3K of memory. It is recommended
that owners of the Sol Terminal Computer use the SOLOS Personality
Module, although CONSOL will support many of BASIC's requirements.
CUTER is available in ROM on the GPM General Purpose Memory module,
and on cassette tape. CUTER may be loaded into memory at any address
from cassette; SOLOS and the GPM version of CUTER start at address
C000 Hex. When BASIC is first loaded in from cassette it is possible
to set the upper bound of memory used for storage of the current
BASIC program. This must be done when the cassette version of CUTER
is used, so as to avoid writing over CUTER. For reading and writing
files on cassette tape, a Processor Technology CUTS Computer User's
Tape System cassette interface is necessary. The Sol Terminal
Computer already contains similar built-in circuitry. For display of
the interactions with BASIC, including full cursor control, the
Processor Technology VDM-1 Video Display Module is recommended,
although the output may be set to other devices through SOLOS or
CUTER. Again, the Sol already contains circuitry for this function.

The full version of BASIC as it comes on cassette resides in
approximately 15K of memory starting at address 0. When BASIC is
first loaded it is possible to delete certain portions of the BASIC
program which may not be needed, such as matrix opera-

1-4 BASIC

tions, reducing the memory requirement to approximately 12K.
Programs written in BASIC are placed in the addresses immediately
above BASIC itself, whether shortened or not. A computer containing
only 16K of memory can hold the shortened BASIC plus short programs.
For full use of BASIC, plus ample storage area for long programs and
data, 24 to 32K of memory is recommended. Memory should always be
addressed continuously from address 0.

2-1 BASIC

SECTION 2

2. ELEMENTS OF BASIC USAGE

Before writing and working with BASIC programs, you have to know
how to get into the BASIC environment and the rules for using
BASIC. This section presents the fundamentals of BASIC usage.

2.1. HOW TO INITIALIZE AND LEAVE BASIC

Extended BASIC is available on cassette tape. To make it
available for use on the computer, you must read it from tape
using your System Monitor, SOLOS or CUTER.

Assuming you have one of the systems described in section 1.2,
the first task is to connect the cassette recorder to the
computer. Use the Auxiliary Input, Monitor, and Remote plugs on
the cassette recorder. Connect them to the computer as follows:

Auxiliary Input to Audio Out
Monitor to Audio In
Remote to Motor 1

On the cassette recorder, turn the tone for maximum treble, and
set the volume to a medium level.

On the computer, in the SOLOS or CUTER command mode, give the
command:

XEQ BASIC <CR>

or the equivalent commands:

GET BASIC <CR>
EX{ECUTE} 0 <CR>

The XEQ or GET command will activate the cassette recorder.
Make sure the tape is rewound to the beginning and then press
the PLAY button. After the tape has been read by the XEQ
command, BASIC will display a message. If the GET command has
been used, SOLOS or CUTER will indicate the size of the file
read and display a prompt. Then you must type the EXECUTE
command to initialize BASIC.

When BASIC is first entered, a copyright notice appears, and
then the message: SIZING MEMORY. At this time BASIC scans the
memory locations above BASIC to determine how much space is

2-2 BASIC

available for program and data storage. During this process,
the existing memory contents are not disturbed. After a brief
delay the message

LAST AVAILABLE MEMORY LOCATION (HEX) IS nnnn

appears, where nnnn is a memory address in hexadecimal notation.
If an address appears which is lower than expected, it may be
due to a bad memory address or the existence of read only memory
at location nnnn + 1.

The following message also appears:

GIVE FIRST PROTECTED MEMORY LOCATION (HEX):

Now you may enter an address lower than the "last available
memory location", and BASIC will not use the address or any
others above it. This allows the protected memory to be used
for programs other than the current BASIC program. If the CUTER
monitor is used from cassette tape, enter the starting address
at which CUTER was loaded. The amount of memory available for
program and data storage is equal to the "first protected memory
location" minus the memory used for BASIC itself, which is
adjustable. If you type a carriage return instead of an address
BASIC will use memory up to the last available memory location.
Next, a question appears:

DELETE MATRIX OPERATIONS?

Now type Y for yes or N for no. If you type Y, the part of
BASIC which performs matrix operations will be temporarily
removed, making more memory available for programs and data. If
you type N, the READY message will appear, indicating that you
may begin to enter commands or programs from the keyboard. If
you typed Y the following additional message will appear:

DELETE EXTENDED FUNCTIONS?

Again type Y or N to remove or not remove an additional part of
BASIC which performs trigonometric functions and certain other
extended functions. The following functions cannot be used if N
is typed: SIN, COS, THAN, EXP, SQR, ATN, LOG, LOG10. After Y or
N is typed, the READY message will appear.

As long as BASIC is available on the computer, the command

EX{ECUTE} 0 <CR>

will enter it.

After BASIC displays the READY message, you can enter programs
and issue commands.

To leave BASIC and return to the SOLOS or CONSOL personality
module, simply type BYE <CR>

2-3 BASIC

BASIC and its current program, if any, are not lost and you can
reenter by typing the EXECUTE} 0 command.

2.2. DEFINITIONS OF COMMANDS AND STATEMENTS

Whenever you type a line of text ending with a carriage return
in the BASIC environment, BASIC interprets it as a command or as
a statement. A command is an instruction that is to be executed
immediately, while a statement is an instruction that is to be
executed at a later time, probably in a sequence with other
statements.

BASIC differentiates between commands and statements by the
presence or absence of line numbers. A statement is preceded by
a line number. A command is not. Examples of command lines
are:

LIST 10,90 <CR>
DEL 70 <CR>
BYE <CR>

Examples of statement lines are:

 10 LET A = 100 <CR>
 70 PRINT Al, Z7 <CR>
100 INPUT X,Y,C <CR>

You can enter more than one statement on a line by using the
colon as a separator. For example:

10 LET X = 0 : GO TO 150

is the same as

10 LET X = 0
20 GO TO 150

When entering multiple statements on a line, precede only the
first statement with a line number. For example:

100 INPUT A,B,C:LET X = A - B*C

A command or statement has a keyword that tells what is to be
done with the rest of the line. In the examples above, the
keywords are LIST, DEL, BYE, LET, PRINT, and INPUT. Keywords
can be abbreviated by eliminating characters on the right and
following the abbreviation with a period. For example, the
following statements are equivalent:

10 PRINT X,Y
10 PRIN. X,Y
10 PRI. X,Y
10 PR. X,Y
10 P. X,Y

2-4 BASIC

The minimum number of characters allowed in the abbreviation is
determined by the number of characters required to uniquely
identify the keyword and by a hierarchy of keywords in state-
ments or commands. Appendices 1 and 2 indicate the minimum
abbreviations allowed for all command and statement keywords.

2.3. DESCRIPTION OF BASIC STATEMENTS

A statement is preceded by a line number which must be an integ-
er between 1 and 65000. This line number determines the state-
ment's place in a sequence of statements. The first word
following the statement number tells BASIC what operation is to
be performed and how to treat the rest of the statement. For
example:

200 PRINT "THIS IS AN EXAMPLE"

 Indicates what is to be printed.
 Tells BASIC that a printing operation is to
 take place.
 Indicates that this statement will be executed before
 statements with line numbers greater than 200 and
 after statements with line numbers less than 200.

Blanks do not affect the meaning of a statement in BASIC. That
is, the following are equivalent statements:

20 GO TO 200
20GOTO200

BASIC automatically removes blanks from statements as you enter
them. Blanks in strings (discussed later) are not altered.

BASIC statements specify operations on constants, variables, and
expressions. These terms are discussed in the units below.

2.3.1. Constants

A constant is a quantity that has a fixed value. In Extended
BASIC constants are either numerical or string. A numerical
constant is a number, and a string constant is a sequence of
characters.

A numerical constant can be expressed in any of the following
forms:

Examples
Integer 1, 4000, 32543, -17
Floating point 1.73, -1123.01, .00004
Exponential 3.1001E-5, 10E4, 230E-12

A string constant is indicated by enclosing a string of charac-
ters in quotation marks. For example:

"Illinois"
"The answer is"

Strings are discussed in more detail in section 5.

2-5 BASIC

2.3.2. Variables

A variable is an entity that can be assigned a value. In
Extended BASIC a variable that can be assigned a numerical value
has a name consisting of a single letter or a single letter
followed by a digit. The following are examples of numerical
values being assigned to numerical variables:

A = 17
B9 = 147.2

A variable that can be assigned a string value has a name
consisting of a single letter followed by a dollar sign or a
single letter followed by a digit followed by a dollar sign $.
Examples of string values being assigned to string variables
are:

A$ = "J. PAUL JONES"
X$ = "711 N. Murry"
R9$ = "Payables, Dec. 9"

2.3.3. Expressions

An expression is any combination of constants, variables,
functions, and operators that has a numerical or string value.
Examples are:

X-2 + Y - A*B
22 + A
"NON" + A$
NOT N

A numerical expression is an expression with a numerical value.
It may include any of the following arithmetic operators:

^ exponentiate
* multiply
/ divide
+ add
- subtract

In an expression arithmetic operators are evaluated in the order
shown below:

 highest - (unary negate)
 next highest ^
 next highest * and /
 lowest + and -

Expressions in parentheses are evaluated before any other part
of an expression. For example:

A / 2 * B - (4 / C) ^ 2

third first
 second
 fourth
 fifth

2-6 BASIC

Numerical expressions can also include logical and relational
operators. These are introduced in section 4.

Operations in string expressions are described in section 5.

2.4. DEFINITION OF A PROGRAM

A program is a stored sequence of instructions to the computer.
The instructions are specified in statements arranged to solve a
particular problem or perform a task. The statement numbers
determine the sequence in which the instructions are carried
out. For example, the following program averages numbers:

10 PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";
20 INPUT N
30 PRINT "TYPE ",N;"NUMBERS"
40 FOR I = 1 TO N
50 INPUT X
60 S = S + X
70 NEXT I
80 PRINT "THE AVERAGE IS ", S/N

2.5. THE CALCULATOR MODE OF BASIC

In unit 2.2, a statement was described as a user-typed line
preceded by a statement number and a command was described as a
user-typed line without a statement number. In Extended BASIC
you can also type a statement without a statement number and it
will be treated as a command. That is, BASIC executes the
statement as soon as you type the carriage return at the end of
the line. For example:

User: PRINT "5.78 SQUARED IS ",5.78^2 <CR>
BASIC: 5.78 SQUARED IS 33.3084

Thus, you can use BASIC as a calculator to perform immediate
computations.

If you perform a sequence of operations in calculator mode,
BASIC will remember the results of each statement just as it
does in a program. For example:

User: LET A = 20.78 <CR>
INPUT X

BASIC: ? 2 <CR> The user types 2 in response to the ?.
User: LET B = A*X <CR>

IF B > X THEN PRINT B
BASIC: 41.56

In the documentation of individual statements in sections 4 and
5, statements that can be used in calculator mode are marked
CALCULATOR in the box containing the statement form.

3-1 BASIC

SECTION 3

3. HOW TO CREATE, EDIT, EXECUTE, AND SAVE A PROGRAM

A BASIC program is a stored sequence of instructions to the
computer. This section tells how to enter a program into the
computer, view the text of the program and alter it, execute the
program, save it for future use, and retrieve it from storage.

3.1. CREATING A PROGRAM

To create a program, simply type the statements of the program
in BASIC. Precede each statement with a statement number and
follow it with a carriage return. For example:

User: 10 INPUT X,Y,Z <CR>
20 PRINT X+Y+Z <CR>

A program now exists in BASIC. When executed the program will
accept three numbers from the terminal and then print their sum.

When entering statements be careful not to create lines that
will be too long when formatted by BASIC. BASIC will expand
abbreviated statements; for example P. will become PRINT in a
listing or edit. BASIC will insert blanks to improve
readability, if the program was typed without them. These two
factors can expand a line beyond the limit set by the
SET LL = length command or statement. For more information
about line length errors, see "LL" in Appendix 3.

It is not necessary to enter the statements in numerical order.
BASIC will automatically arrange them in ascending order. To
replace a statement, precede the new statement with the
statement number of the line to be replaced. For example:

User: 20 INPUT X,Y <CR> The user enters the
10 PRINT "TYPE X AND Y" <CR> statements out of
30 PRINT X*Y <CR> sequence.
30 PRINT "THE PRODUCT IS ",X*Y <CR> Duplicate statement
LIST <CR> number.
 10 PRINT "TYPE X AND Y" BASIC orders the
 20 INPUT X,Y statements and keeps
 30 PRINT "THE PRODUCT IS ",X*Y only the last line

entered for a given
statement number.

3-2 BASIC

While entering statements or commands in BASIC, you can use any
of the following keys on the terminal to correct the line being
typed:

DEL Deletes the current character and shifts the
remainder of the line to the left.

ß
(Left Arrow)

Moves the cursor one position to the left.

à
(Right Arrow)

Moves the cursor one position to the right.

REPEAT Moves the cursor rapidly through the line when
used with the left or right arrows. Also
causes repetition of any key held down at the
same time.

MODE
SELECT

Aborts a running program, infinite loop,
listing, listing, and getting or saving
operations. Deletes a line being typed.

RETURN Terminates the line. The line remains as it
appeared when the RETURN key was typed.

LINE FEED Terminates the line. All characters to the
right of the cursor are erased.

(Up Arrow) Initiates the insert mode. When you type
characters in the insert mode, they are
inserted at current cursor position, and the
rest of the line is moved to the right.

(Down Arrow) Terminates the insert mode.

CONTROL-X Cancels the line being typed, and positions the
cursor on a new line. The cancelled line
remains on the screen. May also be used while
the user is typing a responce to an INPUT
statement in a running program.

3.2. COMMANDS TO AID IN CREATING A PROGRAM

The commands described in this section are likely to be used
while creating a program. The LIST command displays the
program. DELETE and SCRATCH are used to erase statements. REN
lets you automatically renumber statements. The EDIT command
makes the line editor available.

3-3 BASIC

LIST Command

General forms:

LIST List the entire program.
LIST n List statement number n.
LIST n1, List statement number n1 through the end

of the program.
LIST ,n2 List all statements from the first through

statement number n2.
LIST n1,n2 List statements numbered n1 through n2.

Last in a series of statement numbers
First in a series of statement numbers

Examples:

LIST 100,150 <CR>
LIST 50, <CR>

The LIST command displays the indicated statements in increasing
numerical order. It automatically formats the text of the
statements, indenting and adding spaces where appropriate. For
example:

User: 10 FOR I = 1 TO 100 <CR>
30 NEXT I <CR>
20 PRINT I^2 <CR>
LIST <CR>
 10 FOR 1=1 TO 100
 20 PRINT I^2
 30 NEXT I

You can control the display of material using the following
keys:

MODE key Aborts listing
Space bar Causes a pause in the listing. Striking

it again causes the listing to resume.
1 through 9 Changes the speed at which material is displayed.

3-4 BASIC

DEL Command

General forms:

DEL Delete all statements.
DEL n Delete statement number n.
DEL n1, Delete all statements from n1 through the

end of the program.
DEL ,n2 Delete all statements from the first through

statement n2.
DEL n1,n2 Delete statement numbers n1 through n2.

Last in a series of statement numbers
First an a series of statement numbers

Examples:

 DEL ,150 <CR>
 DEL 75,90 <CR>

The DEL command deletes the indicated statements. For example:

User: 100 LET A = 100 <CR>
110 INPUT X,Y,Z <CR>
120 PRINT (X+Y+Z)/A <CR>
DEL 110, <CR>
LIST <CR>

BASIC: 100 LET A=100

Also, entering a line number that is not followed by a statement
deletes a line. For example:

USER: 100 <CR>
LIST 100 <CR>

BASIC: Line 100 has been deleted.

SCRATCH Command

General form:

SCR{ATCH} Delete the entire program and clear all
variable definitions.

Examples:
SCR <CR>
SCRATCH <CR>

3-5 BASIC

The SCRATCH command deletes the entire program and clears all
variable definitions established during previous program runs or
by statements executed in the calculator mode. For example:

User: A = 100 <CR> A receives a value of 100.
PRINT A <CR>
100 BASIC prints the assigned value for A.
SCR <CR> The SCR command clears variables.
PRINT A <CR>
0 A's value is now 0.
LIST <CR> The SCR command has deleted all state-

ments previously existing in the BASIC
environment.

REN Command

General forms:

REN Renumber all statements. The first statement
will be numbered 10 and subsequent statement
numbers will be increments of 10.

REN n Renumber all statements. The first statement
will be numbered n and subsequent statement
numbers will be increments of 10.

REN n,i Renumber all statements. The first statement
will be numbered n and subsequent statement
numbers will be increments of i.

State- integer increment
ment
number

Examples:

REN <CR>
REN 100, 5 <CR>

The REN command renumbers all statements of the program as
indicated, maintaining the correct order and branches in the
program. For example:

User: 10 INPUT A,B <CR>
20 PRINT "A*B IS ",A*B <CR>
30 GO TO 10 <CR>
REN 100 <CR>
LIST <CR>
 100 INPUT A,B
 110 PRINT "A*B IS ",A*B
 120 GO TO 100

Notice in line 120 that GO TO 10 has been changed to GO TO 100.
If line 30 had been GO TO 50, thus referring to a line number
which does not exist in the program to be renumbered, GO TO 50
would have been changed to GO TO 0. All references to non-
existant line numbers will be changed to 0.

3-6 BASIC

EDIT Command

General form:

EDIT n Edit statement number n.

Statement number

Example:

EDIT 150 <CR>

The EDIT command displays the line to be edited and enters a
mode that allows changes to the line using any of the following
special keys:

Key Effect in EDIT Mode

DEL Deletes the current character and shifts the
remainder of the line to the left.

<- (Left
Arrow)

Moves the cursor one position to the left.

-> (Right
Arrow)

Moves the cursor one position to the right.

REPEAT Moves the cursor rapidly through the line when
used with a <- or ->.

CONTROL-X Cancels the line being typed, and positions
the cursor on a new line. The cancelled line
remains on the screen.

MODE SELECT Terminates the edit leaving the line as it
was.

RETURN Terminates the edit leaving the line as it
appears on the screen.

LINE FEED Terminates the edit deleting all characters to
the right of the cursor.

^ (Up Arrow) Initiates the insert mode. When you type
characters in the insert mode, they are
inserted at the current cursor position and
the rest of the line is moved to the right.

(Down Arrow) Terminates the insert mode.

3-7 BASIC

For example:

User: 10 PRINT "ENTER Q, Y, AND Z" <CR>
20 INT X, Y, Z <CR>
EDIT 10 <CR>

BASIC: 10 PRINT "ENTER Q, Y, AND Z"
User: (Positions the cursor over Q and types <CR>).

LIST 10 <CR>
BASIC: 10 PRINT "ENTER X, Y, AND Z"
User: EDIT 20 <CR>
BASIC: 20 INT X,Y,Z
User: (Positions the cursor over T and strikes the up arrow

key. In insert mode he then types PU. A line feed
terminates the edit.)
LIST <CR>

BASIC 20 INPUT X,Y,Z

3.3. EXECUTING A PROGRAM

When a program is executed with the RUN command, BASIC
interprets each of the statements sequentially, then it carries
out the instructions.

If BASIC encounters a problem during any of these steps, it
prints a message describing the error. The meanings of BASIC
error messages are given in Appendix 3.

During execution a program can be interrupted by pressing the
MODE key. This is true whether the program is running
correctly, is in a loop, or is waiting for input. No infor-
mation is lost and you can continue execution by giving the CONT
command.

RUN Command

General forms:

RUN Execute the current program.
RUN n Execute the current program beginning with

statement number n.
Statement number

Examples:

RUN <CR>
RUN 100 <CR>

The RUN command executes all or part of the current program. If
no statement number is specified, the command clears all
variables and then executes the program. If a statement number
is indicated, the command executes the program beginning with
that statement number, but does not clear the variable
definitions first. For example:

3-8 BASIC

User: 10 LET A = 10, B = 20, C = 30 <CR>
20 PRINT A^2*B-C <CR>
30 STOP <CR>
40 PRINT A^2*(B-C) <CR>
RUN <CR>

BASIC: 1970
STOP IN LINE 30 The STOP statement interrupts the

program.
User: RUN 40 <CR>
BASIC: -1000 Notice that A, B, and C still have

READY the values assigned in statement 10.

CONT Command

General form:

CONT Continue execution.

Example:

CONT <CR>

The CONT command continues the execution of a program that was
interrupted by the MODE key or stopped by the execution of a
STOP statement (STOP is documented on page 4-9. For example:

User: RUN <CR> The user executes a program that computes
BASIC: 1 and prints the squares of numbers 1

 4 through 100.
 9
 16

User: MODE The user presses the MODE key to inter-
BASIC: STOP IN LINE 70 rupt execution.
User: CONT <CR> The CONT command continues execution of
BASIC: 25 the program.

 36
 49
 .
 .
 .

Note: If you edit any part of a program after interrupting
execution, all variable definitions are lost. Thus you
cannot stop a program's execution, change a statement in
that program, and then continue execution or print var-
iable values.

3-9 BASIC

CLEAR Command

General form:

CLEAR Erases the definitions of all variables
and leaves the program intact.

Example:

CLEAR <CR>

The CLEAR command clears all variable definitions but does not
erase the statements of the current program.

For example:

User: 10 A=10,B=20,C=30 <CR>
20 STOP <CR>
30 PRINT A,B,C <CR>
RUN <CR>

BASIC: STOP IN LINE 20
User: RUN 30 <CR>
BASIC: 10 20 30 The variables have the

READY values assigned in line
User: CLEAR <CR> 10.

RUN 30 <CR>
BASIC: 0 0 0 Variable definitions

READY have been cleared.
User: LIST <CR>
BASIC: 10 A=10,B=20,C=30 The program remains

20 STOP intact.
30 PRINT ABC

3.4. SAVING A PROGRAM ON TAPE AND RETRIEVING IT

Once you have created and tested a program you can save it on
cassette tape for future use. The commands described in this
unit can be used to save the program on tape, read it from tape,
read and automatically execute it, or read the program and
append it to the statements currently in BASIC.

3.4.1. About Cassette Recorders

Successful and reliable results with cassette recorders require
a good deal of care. Use the following procedures:

3-10 BASIC

1) Use only a recorder recommended for digital usage. For use
with the Processor Technology Sol or CUTS, the Panasonic RQ-413
AS or Realistic CTR-21 is recommended.

2) Keep the recorder at least a foot away from equipment cont-
aining power transformers or other equipment which might gener-
ate magnetic field picked up by the recorder as hum.

3) Keep the tape heads cleaned and demagnetized in accordance
with the manufacturer's instructions.

4) Use high quality brand-name tape preferable a low noise, high
output type. Poor tape can give poor results, and rapidly wear
down a recorder's tape heads.

5) Bulk erase tapes before reusing.

6) Keep the cassettes in their protective plastic covers, in a
cool place, when not in use. Cassettes are vulnerable to dirt,
high temperature, liquids, and physical abuse.

7) Experimentally determine the most reliable setting for volume
and tone controls, and use these settings only.

8) On some cassette recorders, the microphone can be live while
recording through the AUX input. Deactivate the mike in accord-
ance with the manufacturer's instructions. In some cases this
can be done by inserting a dummy plug into the microphone jack.

9) If you record more than one file on a side, SAVE an empty
file named "END" for example, after the last file of interest.
If you read this file header, you will know not to search beyond
it for files you are seeking.

10) Do not record on the first or last 30 seconds of tape on a
side. The tape at the ends gets the most physical abuse.

11) Most cassette recorders have a feature that allows you to
protect a cassette from accidental erasure. On the edge of the
cassette opposite the exposed tape are two small cavities cover-
ed by plastic tabs, one at each end of the cassette. If one of
the tabs is broken out, then one side of the cassette is pro-
tected. An interlock in the recorder will not allow you to
depress the record button. A piece of tape over the cavity will
remove this protection.

12) Use the tape counter to keep track of the position of files
on the cassette. Always rewind the cassette and set the counter
to zero when first putting a cassette into the recorder. Time
the first 30 seconds and note the reading of the counter. Al-

3-11 BASIC

ways begin recording after this count on all cassettes. Record
the beginning and ending count of each file for later reference.
before recording a new file after other files, advance a few
counts beyond the end of the last file to insure that it will
not be written over.

13) The SOLOS/CUTER command CATalog can be used to generate a
list of all files on a cassette. Exit BASIC using BYE, type CAT
<CR>, rewind to the beginning of tape, and press PLAY on the
recorder. As the header of each file is read, information will
be displayed on the screen. If you have recorded the empty file
called END, as suggested, you will know when to search no furth-
er. If you write down the the catalog information along with
the tape counter readings and a brief description of the file,
you will be able to locate any file quickly. After completing
the catalog, you may re-enter BASIC by typing EX 0 <CR>.

14) Before beginning work after any modification to the system,
test by SAVEing and GETting a short test program. This could
prevent the loss of much work.

3.4.2. Text and Semi-Compiled Modes of Program Storage

The four commands involved in storing and retrieving programs
from cassette: SAVE, GET, APPEND, and XEQ, all have optional
parameters T, for text mode of storage, or C, for semi-compiled
mode of storage. (APPEND does not offer the semi-compiled
option.) In text mode, the current program is saved literally,
as the program would appear when listed. If a program may be
used with other versions of BASIC, or other editors, it should
be saved in this form. In semi-compiled mode, the program is
partially compiled, and is stored on cassette in a condensed
form which saves tape, and allows programs to be recorded and
accessed faster. The semi-compiled program may not intelligible
to other versions of BASIC, however, and cannot be manipulated
in a meaningful way by other editors.

3.4.3. Reading or writing on Tape

To read from or write to a cassette recorder, connect it to the
computer as described in section 2. Remember to adjust the tone
for maximum treble and set the volume to a medium level.

When you issue any of the tape input/output commands (SAVE, GET,
XEQ, or APPEND), BASIC tells you to prepare the cassette
recorder for the requested operation, if you are working with a
text mode (T) program. No messages appear for semi-compiled
programs. After typing the command, or after the message
appears, you must rewind the tape or position it properly. Be
careful not to write over information that you want to save.

3-12 BASIC

Depending on the operation requested, next you press either the
PLAY or RECORD button on the recorder. Finally, depress any key
on the keyboard to tell BASIC the tape is ready and it can begin
to read or write.

Any of the tape saving or retrieving commands can be interrupted
by pressing the MODE SELECT key. There may be a slight delay
before the effect of the MODE SELECT key takes place.

SAVE Command

General form:

SAVE file name {,mode} Save the current program on a
cassette file and label it with

1 to 5 the specified file name.
characters

T or C

Examples:

SAVE SUMS <CR>
SAVE ADDR ,T <CR>

The SAVE command writes the current program on a portion of a
cassette tape referred to as a file, labels the file with the
specified name, and marks the end of the file.

The file name consists of 1 to 5 characters and an optional unit
number. The form is:

name/unit
where unit can be 1 or 2. For example:

PROG1/2 PROG1 on unit 2
STUFF STUFF on unit 1

Unit 1 is the default unit. To GET or SAVE from the recorder
plugged into unit 1, you need not specify a unit number.

The T and C options let you specify that the text of your
program is to be saved or that a semi-compiled version of the
program is to be saved. C (semi-compiled) is the default option
and need not be specified. In deciding whether to save your
program in text or in semi-compiled form, keep the following
advantages and disadvantages in mind:

3-13 BASIC

 Semi-compiled versus Text

-Is more efficient -Is recognizable as a sequence
-Loads more quickly of BASIC statements
-Can be saved more quickly -Can be edited by editors out-
-Might be dependent on the side BASIC
 version of BASIC in use -Is independant of the
-Cannot be edited by external version of BASIC in use
 editors

For programs you intend to preserve and use frequently, it is
best to save them in both modes: in text mode to preserve
complete documentation and enable compatibility with other
editors, and in semi-compiled form for rapid loading.

When the SAVE command is issued, and the text mode selected, BASIC
tells you to prepare the tape for recording. In response you
should position the tape appropriately (make sure you are not
trying to record on the leader), press the RECORD button, and
strike any key to tell BASIC the tape is ready. For example:

User: 10 PRINT "ENTER INTEREST RATE" <CR>
20 INPUT R <CR> 25 S = 1 <CR>
30 FOR I = 1 TO 100 <CR>
40 S = S + S*R <CR>
50 IF S >= 2 THEN 70 <CR>
60 NEXT I <CR>
70 PRINT "INVESTMENT DOUBLES IN ",I;"YEARS" <CR>
SAVE INV, T <CR>

BASIC: PREPARE TAPE UNIT 1 FOR WRITING T0: INV
User: (Rewinds tape, advances past the leader, presses the

RECORD button, and strikes a key on the keyboard)
BASIC: (Records the program on tape)

READY

Saving in semi-compiled mode gives no messages, as they are
shown in the example above. Instead, after the SAVE command is
given, the cursor will remain on the same line as the command
until the recording is complete. Then BASIC will print "READY".

The recording process can be aborted by striking the MODE SELECT
key. When recording is complete, the cassette drive motor will
be turned off, and READY will appear on the screen. The program
which was recorded will still be in memory. Write down the
beginning and ending tape counter readings to help in locating
the file.

3-14 BASIC

GET Command

General form:

GET file name {,mode} Read the specified file from
 tape.

1 to 5
characters/unit T or C

Examples:

GET SUMS <CR>
GET AN33/2 ,C <CR>

The GET command searches the tape for the specified file, then
reads the file making the program contained on it available in
BASIC. Any statements residing in BASIC before the file was
read are lost.

The mode option lets you specify that the program to be read was
saved in text(T) or semi-compiled (C) form. C is the default
option and does not have to be specified.

The file name can include a unit number, of 1 or 2. For
example, the command below retrieves a program file named FAC
from unit 2.

GET FAC/2

If no unit is specified, unit 1 is assumed.

An example of the GET command using T mode follows:

User: LIST <CR> There are no statements residing
in BASIC.

GET INV, T <CR>
BASIC: PREPARE TAPE UNIT 1 FOR READING FROM: INV
User: (Rewinds the tape, presses the PLAY button, and

strikes a key on the keyboard)
BASIC: (Reads the file from tape)

READY
User: LIST <CR>
BASIC: 10 PRINT "ENTER INTEREST RATE"

 20 INPUT R BASIC now contains the
 25 S=1 program that was read
 30 FOR I=1 TO 100 from tape.
 40 S=S+S*R
 50 IF S >= 2 THEN 70
 60 NEXT I
 70 PRINT "INVESTMENT DOUBLES IN ",I;"YEARS"

3-15 BASIC

An example of the GET command using the C mode follows:

User: LIST <CR> There are no statements residing in BASIC.
GET INK, C <CR>

BASIC: READY
User: LIST <CR> BASIC will list the program as above.

The reading process can be aborted by striking the MODE SELECT
key. If the named file is not located, the cassette will be
searched to the end. Possible causes of missing files include
bad tape, improper tape recording settings or cable connections,
and writing on leader at the beginning of the tape. Repeated RD
(read) errors occurring at precisely the same point in the tape
indicate that the file was not properly recorded, and must be
saved again.

NOTE: Program and data files recorded by Processor Technology's
BASIC/5 and other versions of BASIC use a file format which is
incompatible with Extended Cassette BASIC. Attempts to get such
files will fail. It may be possible to retrieve such files
within the version of BASIC that created them, and punch them on
paper tape, in complete text mode. The paper tape may then be
read by Extended Cassette BASIC. In any case such files may be
listed, and then typed by hand.

XEQ Command

General form:

XEQ file name {,mode} Read the specified file from
tape and execute the program

1 to 5 contained on it.
characters/unit

T or C

Examples:

XEQ SQR <CR>
XEQ STR4,T <CR>

The XEQ command reads the specified file, making the program
contained on it available in BASIC, and begins execution. Any
statements residing in BASIC before the tape was read are lost.
For example:

User: XEQ INV, T <CR>
BASIC: PREPARE TAPE UNIT 1 FOR READING FROM INV
User: (Rewinds tape, presses the PLAY button, and strikes a

key on the keyboard)
BASIC: ENTER INTEREST RATE BASIC begins execution of the

? program contained on file INV.

3-16 BASIC

The mode option lets you specify the form of the program file to
be read and executed. T retrieves a program saved in text form
and C retrieves a program saved in semi-compiled form. C is the
default mode and need not be specified.

Tape unit 1 or 2 can be specified with the file name. If
neither is specified, unit 1 is used.

The XEQ command can be interrupted at any time by striking the
MODE SELECT key.

APPEND Command

General form:

APPEND file name , T Read the specified file from tape
and merge the program contained on

1 to 5 it with the statements already re-
characters/unit siding in BASIC.

Example:

APPEND PROG2,T

The APPEND command searches a tape for the specified file.
Without erasing the statements currently in BASIC, it reads the
file and merges the statements found there with the existing
statements. The line numbers of statements from the appended
file determine their positions with respect to the statements
already in BASIC. If a line number from the file is the same as
that of a statement residing in BASIC, the statement from the
file replaces the previous statement.

Note: Only text files can be appended. T is specified in the
command for consistency with other versions of BASIC.

For example:

User: LIST <CR>
BASIC: 10 LET X=0

 20 PRINT "ENTER Y AND Z"
 30 INPUT Y,Z

User: APPEND PART2, T <CR>
BASIC: PREPARE TAPE UNIT 1 FOR READING FROM: PART2
User: (Rewinds the tape, presses the PLAY button, and presses

a key on the keyboard)

3-17 BASIC

BASIC: (Reads the file from tape)
READY

User: LIST <CR>
BASIC: 10 LET X=0 Now BASIC contains the

 20 PRINT "ENTER Y AND Z" statements read from
 30 INPUT Y,Z tape as well as the
 100 A1=X+Y+Z original statements.
 110 A2=X+Y-Z
 120 A3=X-Y+Z
 130 PRINT A1,A2,A3

4-1 BASIC

SECTION 4

4. A BEGINNER'S SET OF BASIC STATEMENTS

You can write BASIC programs for a multitude of mathematical and
business applications using just the statements described in
this section. This section tells how to assign values to
variables, perform data input and output, stop a program,
control the sequence in which statements are executed, and make
logical decisions. These include the simpler BASIC concepts.
After you have become familiar with the statements presented in
this section, read Section 5 to learn about the more extended
BASIC concepts.

REM Statement

General Form:

REM {any series of characters} Has no effect on program
execution.

Examples:

 10 REM
100 REM: THIS PROGRAM COMPUTES INCOME TAX

The REM statement allows you to insert comments and messages
within a program. It is a good practice to include remarks
about the purpose of a program and how to use it. For example:

 10 REM - THIS PROGRAM COMPUTES THE TOTAL INTEREST
 20 REM - ON A TEN-YEAR LOAN
 30 REM
 40 REM - TO USE IT YOU MUST SUPPLY THE PRINCIPAL
 50 REM - AND THE INTEREST RATE
 60 REM
 70 PRINT "ENTER THE PRINCIPAL"
 80 INPUT P
 .
 .
 .
200 PRINT "THE INTEREST IS ";I

4-2 BASIC

LET Statement

General forms: calculator

{LET} variable = expression Assigns the value of the
expression to the variable.

{LET} variable1 = expression1, variable2 = expression2, ...

Examples:

 10 LET X = 100.50
 100 A1=12.7, A2=5.4, A3=50
 200 LET M$ = "SHREVEPORT"

The LET statement evaluates an expression and assigns its value
to a variable. The variable may be a numeric or string variable
and the value of the expression can be a number or a character
string. The value of the expression and the variable must be
the same type. For example:

 10 LET A=0, B=100, C$="FIRST"
 20 PRINT A, C$
 30 A = A + B, C$ = "SECOND"
 40 PRINT A, C$

The equal sign is not a mathematical "equals" operator. It is
an assignment operator. Thus A = A + B assigns to A the
previous value of A plus the value of B.

4.1. GETTING DATA INTO AND OUT OF THE PROGRAM

A program must read and write information to communicate with a
user. Using the INPUT and PRINT statements is the simplist way
to have your program perform input and output.

The INPUT statement reads data typed at the terminal. The form
of the PRINT statement described below displays information at
the terminal's display device. Using these two statements, you
can make your program converse with a user at the terminal.

4-3 BASIC

INPUT Statement

General forms: calculator

INPUT var1, var2, ... Reads one or more values from the
terminal and assigns them to earl,

variable var2, etc.

INPUT "message" var1, var2, ... Prints the message, then
reads values from the ter-

any characters and assigns them to var1,
var 2, etc.

Examples:

 10 INPUT X
 100 INPUT "WHAT IS THE VALUE OF S";S
 200 INPUT, Al, A2, A3, N, T$, Y

The INPUT statement accepts one or more values entered at the
terminal and assigns them in order to the specified variables.
The values entered must agree with the type of variable
receiving the value.

When an INPUT statement is executed, BASIC requests values from
the terminal by printing a question mark or the message, if you
have specified one. You may enter one or more values after the
question mark, but not more than are required by the INPUT INPUT
statement. If you enter several values on one line, they must
be separated by commas. BASIC prompts for additional value with
two question marks until all values required by the INPUT
statement have been entered. For example:

10 PRINT "ENTER VALUES FOR A, B, C, & D "
20 INPUT A,B,C,D
30 PRINT "A*B/C*D IS ";A*B/C*D

When executed, this program accepts data from the terminal as
follows:

User: RUN <CR>
BASIC: ENTER VALUES FOR A, B, C, & D
User: ?5.7 <CR> The user types values in response

??8.9, 7.4 <CR> to BASIC's ? prompt. Notice that
??10.5 <CR> one or more can be typed per line.

BASIC: A*B/C*D IS 71.981757

When a message is included in the INPUT statement, that message
is displayed as a prompt before data is accepted from the
terminal. For example:

User: 10 INPUT "WHAT IS YOUR NAME? ",N$ <CR>
20 PRINT "HI ";N$ <CR>
RUN <CR>

BASIC: WHAT IS YOUR NAME? SUE <CR> -The user types SUE in
HI SUE response to the prompt.

4-4 BASIC

If a comma is placed in the statement after the word INPUT, then
the carriage return and line feed will be surpressed when the
user depresses the carriage return key. In this way the next
message printed by BASIC may appear on the same line. The
program below illustrates this feature:

User: 10 INPUT, "GIVE A VALUE TO BE SQUARED: ",A
20 PRINT " *"; A; " ="; A*A
RUN <CR>

BASIC: GIVE A VALUE TO BE SQUARED: 3 * 3 = 9

The user typed only a 3 and <CR> as input; BASIC completed the
line.

PRINT Statement

General forms: calculator

PRINT Skips one line.
PRINT exp Displays the value of exp.
PRINT exp1, exp2, ... Displays the values of exp1, exp2,

etc., each filling 14 columns.
PRINT exp1; exp2; ... Displays the values of exp1, exp2,

etc.
exp is a numerical
or string expression

Examples:

 10 PRINT X
 100 PRINT "THE SUM IS ";A+B+C+D
 200 PRINT X,Y,Z;A,B/X;L$

The PRINT statement displays information at the terminal. The
information displayed is the value of each expression. It is
displayed in order and the separation between one value and the
next is determined by the separator used. If a comma is used as
a separator, each value is printed at the left of a field of
14 character positions. If a semicolon is used between two
expressions, the second is printed one space after the first.
For example:

User: 10 PRINT 5, 10, 15; 20 <CR>
RUN <CR>

BASIC: 5 10 15 20

The output from each PRINT statement begins on a new line unless
the statement ends with a separator. In this case, the next
PRINT statement will cause values to be displayed on the same
line and the separator will determine the position at which the
cursor (or print head) will remain. For example:

4-5 BASIC

User: 5 LET A1 = 1, A2 = 2, A3 = 3, A4 = 4 <CR>
10 PRINT A1;A2; <CR>
20 PRINT A3,A4 <CR>
30 PRINT "NEXT LINE" <CR>
RUN <CR>

BASIC: 1 2 3 4
NEXT LINE
READY

The following expressions can be used in a PRINT statement for
further control over the position of output:

TAB(exp) Causes the cursor to move to the character posi-
tion given by the value of exp (numerical
expression).

"&c" Prints the control character c. Printing some
control characters performs a function on the
terminal. For example:
Control M - Carriage return
Control J - Line feed
Control K - Home cursor and clear screen
Control N - Home cursor
Section VII of the SOL notebook has a complete
list of control characters and the special symbols
or control functions generated by printing control
characters.

For example:

 10 PRINT TAB(I),"DECIMAL",TAB(I+30),"ENGLISH"
 100 PRINT X, "&J", Y, "&J", Z

Statement 10 prints ENGLISH 30 columns beyond DECIMAL.
Statement 100 prints the values of X, Y, and Z, each on a new
line.

While the PRINT statement is executing and values are being
output, it is possible to interrupt the printing by depressing
the space bar on the keyboard. Depressing the space bar a
second time will cause printing to resume. The speed of
printing maybe controlled with the number keys 1 through 9, key
1 giving the fastest speed. The SET DS = nexpr command also
controls speed of printing to the video display, but has the
additional effect of controlling all output to the screen,
whether or not it was generated by a PRINT statement.

4.2. RETRIEVING DATA FROM WITHIN A PROGRAM

You can place data in a BASIC program using the DATA statement
and access it as needed using the READ statement. The RESTORE
statement allows you to start reading data again from the first
DATA statement or from a specified DATA statement. The TYP(0)
function allows you to determine the type of data to be read
from the DATA statement corresponding to the next READ state-
ment.

4-6 BASIC

READ Statement

General form:

READ var1, var2, ... Reads one or more values from DATA
statements and stores them in var1,

variable var2, etc.

Examples:

 10 READ X2
 100 READ A1, A2, A3, M$

The READ statement reads one or more values from one or more
DATA statements and assigns the values to specified variables.
The value read must be the same type as the variable it is
assigned to.

An example of a program using the READ statement is shown in the
explanation of the DATA statement.

DATA Statement

General form:

DATA constant1, constant2, ... Specifies one or more
values that can be read by

number a READ statement.
or string

Examples:

10 DATA 47.12
100 DATA "ALPHA",400,"BETA",22.6,"GAMMA",74.4

The DATA statement is used with the READ statement to assign
values to variables. The values listed in one or more DATA
statements are read sequentially by the READ statement. For
example:

User: 10 DATA 44.2,76.4,18.9 <CR>
20 DATA 100,47.8,11.25 <CR>
30 READ A,B,C,D <CR>
40 PRINT "SUM IS "; A+B+C+D <CR>
50 READ X,Y <CR>
60 PRINT "SUM IS "; X+Y <CR>
RUN <CR>

BASIC: SUM IS 239.5 (44.2 + 76.4 + 18.9 + 100)
SUM IS 59.05 (47.8 + 11.25)
READY

4-7 BASIC

TYP(0) Function

General Form:

TYP(0) Returns values 1, 2, or 3, depen-
ding on the type of the next DATA
item which will be read by the
next READ statement.

Value Type

 1 numeric data
 2 string data
 3 data exhausted

Example:

 10 IF TYP(0) = 3 THEN 30
 20 READ X

When the TYP(0) function is encountered the program looks ahead
to the next data item in the DATA statement corresponding to the
next READ statement. A value of 1, 2 or 3 is returned depending
on the type of this data item. The argument 0 must appear. The
example above skips a READ statement if the data in the corres-
ponding DATA statement is exhausted. TYP(0) does not work for
file READ.

RESTORE Statement

General forms:

RESTORE Resets the pointer in the DATA state-
ments so that the next value read will
be the first value in the first DATA
statement.

RESTORE n Resets the pointer in the DATA state-
ments so that the next value read will

statement be the first value in the DATA state-
number ment at or after line n.

Examples:

 10 RESTORE
 100 RESTORE 50

The RESTORE statement lets you change the reading sequence in
DATA statements. You can start over or move to a particular
DATA statement. For example:

4-8 BASIC

User: 10 READ X,Y,Z <CR>
20 PRINT X+Y+Z <CR>
30 RESTORE 70 <CR>
40 READ X,Y,Z <CR>
50 PRINT X+Y+Z <CR>
60 DATA 100 <CR>
70 DATA 200,300 <CR>
80 DATA 400 <CR>
RUN <CR>

BASIC: 600 (100 + 200 + 300)
 900 (200 + 300 + 400)
READY

ON...RESTORE Statement

General form:

ON exp RESTORE n1,n2,... If the value of exp is 1,
restores to statement n1, if it

state- is 2, restores to statement n2,
numerical ment etc.
expression number

Examples:

 10 ON A+3 RESTORE 150
 100 ON R RESTORE 200, 300, 350

The ON...RESTORE statement lets you specify the line from which
the next data statement will be read. The next READ statement
will start reading from the DATA statement selected. For
example:

 10 READ X, Y, Z, A, B, C
 20 ON X-Y RESTORE 100, 110, 120
 . The first two value read
 . determine which line will
 . be read next.
 100 DATA 4, 1, 0, 4, 7, 2
 110 DATA 3, 2, 7, 2, 8, 1
 120 DATA 2, 0, 3, 0, 2, 2

4.3. STOPPING OR DELAYING EXECUTION

There are two ways to stop execution of a program from within
the program. The END statement ends the execution of a program.
The STOP statement stops execution and displays a message tell-
ing where execution stopped. After a STOP statement has been
executed, you can issue the CONT command to resume execution at
the next sequential statement. The PAUSE statement can be used
to delay execution of the following statement for a period of
.1 seconds to 1.82 hours.

4-9 BASIC

END Statement

General form:

END Terminates execution.

Example:

 100 END

The END statement terminates execution of a program. For
example:

10 INPUT "WHAT IS THE DIAMETER ", D
20 PRINT "THE CIRCUMFERENCE IS "; 3.1416*D
30 END
40 PRINT "THE AREA IS "; 3.1416*(D/2)^2

When the RUN command is given, only the first three lines of
this program are executed. Statement 40 can be executed with
the command:

 RUN 40 <CR>

STOP Statement

General form:

STOP Stops program execution.

Example:

 100 STOP

The STOP statement stops execution of a program and displays the
message:

STOP IN LINE n

where n is the line number of the STOP statement. Execution can
be continued with the CONT command. For example:

User: LIST <CR>
BASIC: 10 INPUT "WHAT IS THE DIAMETER? ",D

20 PRINT "THE CIRCUMFERENCE IS ";3.1416*D
30 STOP
40 PRINT "THE AREA IS ";3.1416*(D/2)^2

User: RUN <CR>
BASIC: WHAT IS THE DIAMETER? 2 <CR> -The user enters 2 for

THE CIRCUMFERENCE IS 6.2832 the diameter.
STOP IN LINE 30

User: CONT <CR> -The CONT command con-
BASIC: THE AREA IS 3.1416 tinues execution with the

 next statement.

4-10 BASIC

PAUSE Statement

General Form:

PAUSE nexpr Causes a pause before execution of
the following statement of duration
nexpr tenths of seconds. nexpr may
be from 1 to 65535.

Example:

 PAUSE 100 Gives a pause of 10 seconds.

The argument nexpr is first evaluated, and truncated to a posi-
tive integer between 1 and 65535. A pause of of approximately
nexpr tenths of seconds then occurs before the next statement in
the program is executed. If nexpr has a value less than 1, it
will be truncated to zero and no pause will occur. If nexpr has
a value greater or equal to 65536 an error message will appear.
The precise duration of the pause is controlled by the clock
rate of the microprocessor. In a Sol Terminal Computer with the
standard 2.045 MHz jumper installed, the delays will be
approximately as given above. If the clock rate is faster or
slower, the pause will be proportionately shorter or longer.
The maximum delay is 65535 tenths of seconds, or approximately
1.82 hours. Of course multiple PAUSE statements or a loop can
create a pause of any length.

4.4. EXECUTION CONTROL

The statements described in this unit allow you to control the
order in which statements are executed. With the GO TO and
ON...GO TO statements you can branch to a different part of the
program. The FOR and NEXT statements let you repeatedly execute
a set of statements a specified number of times.

GO TO Statement

General forms:

GO TO n Transfers control to statement
GOTO n number n.

statement
number

Example:

 10 GO TO 150

4-11 BASIC

The GO TO statement causes a specified statement to be the next
statement executed. The statement number can be either greater
than or less than the number of the GO TO statement. For
example:

10 PRINT "ENTER A VALUE FOR X"
20 INPUT X
30 PRINT "X SQUARED IS ";X^2
40 GO TO 10

When executed, this program repeats statements 10 through 40
over and over. To escape such an infinite loop, strike the MODE
key. For example:

User: RUN <CR>
BASIC: ENTER A VALUE FOR X
User: ?10 <CR>
BASIC: X SQUARED IS 100

ENTER A VALUE FOR X
User: ?5 <CR>
BASIC: X SQUARED IS 25

ENTER A VALUE FOR X
? (The user strikes the MODE key)
STOP IN LINE 20

ON...GO TO Statement

General forms:

ON exp GO TO n1, n2, ... Executes statement n1 next if
ON exp GOTO n1, n2, ... exp is 1, executes n2 next if

exp is 2, etc.
statement

numerical number
expression

Examples:

 10 ON X GO TO 30, 100
 100 ON A+2 GOTO 10,50,150

The ON...GO TO statement lets you branch to one of several
statement numbers depending on the value of an expression. If
the value of the expression is not an integer, BASIC truncates
it to an integer. If there is no statement number corresponding
to the value of the expression or truncated expression, the next
line is executed.

4-12 BASIC

For example:

User: LIST <CR>
BASIC: 10 INPUT "ENTER VALUES FOR X AND Y ",X,Y

20 PRINT "TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM Y"
30 INPUT N
40 ON N GOTO 60,70
50 GOTO 10
60 PRINT "THE SUM IS ";X+Y:GOTO 10
70 PRINT "THE DIFFERENCE IS ";Y-X:GOTO 10

User: RUN <CR>
BASIC: ENTER VALUES FOR X AND Y ?23.6,98.04 <CR>

TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM Y
User: ?2 <CR>
BASIC: THE DIFFERENCE IS 74.44

ENTER VALUES FOR X AND Y ?234, 89 <CR>
TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM Y

User: ?1.9 <CR> (1.9 is truncated to 1 by BASIC.)
BASIC: THE SUM IS 323

ENTER VALUES FOR X AND Y ? (The user strikes the MODE
STOP IN LINE 10 key to escape the loop.)

FOR and NEXT Statements

General form:

FOR var = exp1 TO exp2 {STEP i}
 . numerical
 . expressions
 . numerical variable
 .
NEXT {var} The statements between FOR and NEXT

are executed repeatedly as the value
same of var increases from exp1, to exp2
variable in steps of 1 or in steps of i, if
as used in present.
FOR statement

The FOR and NEXT statements allow you to execute a set of state-
ments an indicated number of times. The variable specified in
the FOR and (optionally) NEXT statements increases in value at
each repetition of the loop. Its first value is exp1, subse-
quent values are determined by adding 1 (or i, if specified) to
the previous value, and the final value of the variable is exp2.
If the starting value is greater than the ending value in the
FOR statement, the statements in the loop are not executed.

After var reaches its final value and the loop is executed the
last time, the next sequential statement is executed. For
example:

4-13 BASIC

 5 S=1
10 FOR I=1 TO 10
20 S=S*I
30 PRINT I;" FACTORIAL IS ";S
40 NEXT I
50 PRINT "THE LOOP IS FINISHED AND I = ";I

When executed, this program prints the factorials of 1 through
10 as follows:

User: RUN <CR>
BASIC: 1 FACTORIAL IS 1

 2 FACTORIAL IS 2
 3 FACTORIAL IS 6
 4 FACTORIAL IS 24
 5 FACTORIAL IS 120
 6 FACTORIAL IS 720
 7 FACTORIAL IS 5040
 8 FACTORIAL IS 40320
 9 FACTORIAL IS 362880
 10 FACTORIAL IS 3628800
THE LOOP IS FINISHED AND I = 10
READY

The value of a variable specified in a FOR statement can be
changed within the loop, affecting the number of times the loop
will be executed. For example:

10 FOR I=100 TO 50 STEP -5
20 PRINT I
30 LET I=50
40 NEXT I

This loop will only be executed once because I is set to its
final value during the first pass through the loop.

You can include FOR/NEXT loops within other FOR/NEXT loops
provided you do not overlap parts of one loop with another. For
example:

 10 FOR A=1 TO 3
 20 FOR B=A TO 30
 30 PRINT A*B is legal
 40 NEXT B
 50 NEXT A

 10 LET Y=10
 20 FOR X=1 TO Y
 30 FOR Z=Y TO 1 STEP -2 is not legal
 40 PRINT X+Y
 50 NEXT X
 60 NEXT Z

Note: A GO TO or ON...GO TO statement should not be used to
enter or exit a FOR loop. Doing so may produce a fatal
error. Use the EXIT statement, described on the next
page, to exit a FOR loop.

4-14 BASIC

EXIT Statement

General form:

EXIT n Transfers control to statement n and
terminates any active FOR/NEXT loops.

statement
number

Example:

 10 EXIT 75

The EXIT statement allows escape from a FOR/NEXT loop. It
causes the specified statement to be executed next and
terminates all current FOR/NEXT loops. For example:

 .
 .
100 FOR I = 1 TO N
110 FOR J = 1 TO I
120 C = C+1
130 IF C > 100 THEN EXIT 300
 .
 .
200 NEXT J: NEXT I
250 END
300 PRINT "MORE THAN 100 ITERATIONS"

ON...EXIT Statement

General form:

ON exp EXIT n1, n2, ... If the truncated value of exp
is 1, exits to statement n1,

statement if exp is 2, exits to state-
numerical number ment n2, etc. Otherwise the
expression statement is ignored.

Examples:

 10 ON I EXIT 110,150
 100 ON A+B*C EXIT 300, 320, 130

The ON...EXIT statement lets you escape all FOR/NEXT loops to a
statement determined by the value of an expression. If the
truncated value of exp corresponds to a statement number
following EXIT, all current FOR/NEXT loops are terminated and
control is transferred to that statement. If it does not, the
ON...EXIT statement is ignored.

4-15 BASIC

 10 FOR I = 1 TO 9
 20 READ S
 30 ON S+4 EXIT 500,600,700
 .
 .
100 NEXT I
110 DATA 1,4,3,6,4,7.9,4,-1
115 DATA 4,3,7,5,4,3,4,6,-2
120 DATA 4,9,4,0,4,5,7,8,-3

The program above operates as follows: When a value of S is
read, it is added to 4 and the result is truncated to an in-
teger. If this integer is +1, all current FOR/NEXT loops are
terminated and statement 500 is executed; if the integer is +2,
statement 600 is executed; if the integer is +3, statement 700
is executed. If the integer is not +1, +2, or +3, the ON...EXIT
statement is ignored.

4.5. EXPRESSION EVALUATION

An expression is any combination of constants, variables, func-
tions, and operators that has a numerical or string value. An
expression is evaluated by performing operations on quantities
preceding and/or following an operator. These quantities are
called operands. Examples of some expressions and their
operands and operators are:

 Operand Operator Operand

 X + Y
 A OR B
 I ^ 2
 NOT X

The NOT operator precedes an operand. All other operators join
two operands.

When BASIC evaluates an expression, it scans from left to right.
It performs higher-order operations first, and the results
become operands for lower-order operations. For example:

A - B > C The value of A-B becomes an
operand for the > operator.

Thus, operators act on expressions.
The order of evaluation for all BASIC operators is as follows:

Highest - (unary negation)
 | ^
 | NOT
 | * /
 | + -

| > >= = <> <= <
 V AND

Lowest OR

where operators on the same line have the same order, and are
evaluated from left to right.

4-16 BASIC

You can enclose parts of a logical expression an parentheses to
change the order of evaluation. Expressions in parentheses are
evaluated first. For example:

X^2 + 1 AND A > B OR C = D
------- First
 ----- ----- Second
----------------- Third
--------------------------- Fourth

X^2 + 1 AND (A > B OR C = D)
 ----- ----- First
 -------------- Second
------- Third
--------------------------- Fourth

BASIC operators are divided into four types: arithmetic, string,
logical, and relational.

4.5.1. Arithmetic Operators

The arithmetic operators act on numerical operands as follows:

^ exponentiate
* multiply
/ divide
+ add
- subtract

The results are numerical.

Note: BASIC evaluates X*X faster than it does X^2. Evaluation of
X*X*X is about the same speed as X^3.

4.5.2. String Operator

The plus operator acts on strings as follows:

+ concatenate

The result is a string. For example:

User: PRINT "BAR" + "tok" <CR> BARtok

4.5.3. Relational Operators

A relational operator compares the values of two expressions as
follows:

expression 1 relational operator expression2

The result of a relational operation has a numerical value of 1
or 0 corresponding to a logical value of true or false.

4-17 BASIC

The relational operators are:

 Operator Meaning

 = Equal to
 <> Not equal to
 > Greater than
 >= Greater than or equal to
 < Less than
 <= Less than or equal to

The following expressions with relational operators are evalu-
ated for A1 = 1, A2 = 2, X = 3, and Y = 4:

Logical Value Numerical Value
A1 > A2 false 0
A1 <= A2 true 1
X + Y/4 <> 7 true 1
X = Y false 0

4.5.4. Logical Operators

The result of a logical operation has a numerical value of 1 or
0, which corresponds to a logical value of true or false. The
logical operators AND and OR join two expressions with the
following results:

expression1 AND expression2 True only if both expression1
and expression2 are true; other-
wise false.

Expression1 OR expression2 False only if expression1 and
expression2 are false; otherwise
true.

The following expressions are evaluated for A = 1, B = 2, and
C = 3:

Logical Value Numerical Value
C > B AND B > A True 1
C > B AND A = B False 0
C = B AND B = A False 0
C > B OR B > A True 1
C > B OR A = B True 1
A > C OR A = C False 0

The logical operator NOT reverses the logical value of the
expression it precedes. For example, if A, B, and C have the
values shown above, the values of logical expression using the
NOT operator are as follows:

Logical Value Numerical Value
NOT (C > A) False 0
NOT (A = B) True 1
NOT C False 0

(C is true because it has a
nonzero value.)

4-18 BASIC

4.5.5. Logical and Relational Operations in Algebraic
Computations

The numerical value resulting from a logical or relational
operation can be used in algebraic computations as shown in the
example that follows.

The program below counts the number of 3's in 100 values read
from DATA statements:

 10 FOR I = 1 TO 100
 20 READ A
 30 LET X = X + (A = 3) When A = 3, X is increased by 1.
 40 NEXT I
 50 PRINT "OF 100 VALUES ";X;" WERE THREE'S"
100 DATA 1,5,4,6,7,8,9,9,2,3,4,5,3,2,6,7,8,9,3
110 DATA 4,6.7,4,6,8,2,3,8,4,6,9,6,0,4,0,3,1,3
 .
 .
 .

4.5.6. Evaluating Expressions in IF Statements

The IF statement evaluates an expression and decides on an act-
ion based on the truth or falsity of that expression. The IF
statement determines the logical value of a statement as fol-
lows:

Numerical Value Logical Value
0 false

nonzero true

Some examples of expression evaluations in IF statements are:

IF A > B THEN.......
A > B has a value of true (1) or false (0).

IF A THEN...........
A has a value of true (nonzero) or false(0).

IF A AND B THEN.....
A and B each have a value of true (nonzero)
of false (0). A AND B is true only if both
A and B are nonzero.

IF A < B > C THEN...
An expression is evaluated from left to
right for operators of the same order. In
this example, A < B has a value of true (1)
or false (0). That value is then compared
to C. (1 or 0) > C is either true (1) or
false (0).
Warning: This is not the way to compare B
with A and C. For such a comparison, use
the AND operator:

IF A < B AND B > C THEN...

4-19 BASIC

IF A = B = C THEN...
A = B has a value of true (1) or false (0).
That value is then compared to C. (1 or 0)
= C is either true (1) or false (0).
Warning: This is not the way to test for
the equivalence of A, B, and C. For such a
test, use the AND operator:

IF A = B AND B = C THEN...

IF A = B + C THEN...
The arithmetic operation is performed first,
giving a value for B + C. Then A is either
equal to that value (true or 1) or not
equal to that value (false or 0).

4-20 BASIC

IF Statement

General forms: calculator (if no
statement number is
specified)

IF exp THEN n If the value of exp is true, execute
statement n next.

n is a statement number in all of the
forms shown here

exp is a logical expression
in all of the forms shown here

IF exp THEN n1 ELSE n2 If the value of exp is true, execute
statement n1 next; otherwise execute
statement n2 next.

IF exp THEN statement1 : statement2 : ...
If the value of exp is true then
execute the specified statement(s).

IF exp THEN statement1 : statement2 : ...
 ELSE statement3 : statement4 : ...

If the value of exp is true then
execute the statement(s) following
THEN; otherwise execute the state-
ment(s) following ELSE.
Note: The ELSE must appear on the
same line as the IF.

IF exp THEN n ELSE statement1 : statement2 : ...
If the value of exp is true, execute
statement n next; otherwise execute
the statement(s) following ELSE.

IF exp THEN statement1 : statement2 : ELSE n
If the value of exp is true then
execute the statement(s) following
THEN; otherwise execute statement n
next.

Examples:

 10 IF A > B THEN 250
 100 IF A=C AND NOT B THEN PRINT "ERROR":GO TO 350
 200 IF X1 OR Y2 THEN 750 ELSE 305
 300 IF NOT R THEN INPUT "R=",R ELSE 700

The IF statement evaluates a logical expression and then takes
action based on its value. A true value causes the statement
number or statement(s) following THEN to be executed next. If
there is an ELSE clause, a false value for exp causes the state-
ment number or statement(s) following ELSE to be executed next.
Execution continues with the statement following the IF state-
ment, provided control has not been transferred elsewhere.

4-21 BASIC

In the example below, IF statements are used to create an auto-
matic tax table:

 10 INPUT "WHAT IS THE TAXABLE INCOME? $",I
 20 IF I <= 2000 THEN T = .01*I : GO TO 200
 30 IF I <= 3500 THEN T = 20 + .02*I : GO TO 200
 40 IF I <= 5000 THEN T = 50 + .03*I : GO TO 200
 50 IF I <= 6500 THEN T = 95 + .04*I : GO TO 200
 60 IF I <= 9500 THEN T = 230 + .06*I : GO TO 200
 70 IF I <= 11000 THEN T = 320 + .07*I : GO TO 200
 80 IF I <= 12500 THEN T = 425 + .08*I : GO TO 200
 90 IF I <= 14000 THEN T = 545 + .09*I : GO TO 200
100 IF I <= 15500 THEN T = 680 + .1*I : GO TO 200
110 T = 830 + .11*I
200 PRINT "THE TAX IS $";T

5-1 BASIC

SECTION 5

5. ADVANCED BASIC

The statements described in this section make Extended BASIC's
more powerful features available for use:

*With subroutines and functions, you can define activities that
will be perfomed when a simple call is made or when a function
name is specified.

*By using string functions and statements, you can manipulate
character data.

*With dimensioned variables, you can set aside storage to
quickly and easily manipulate large volumes of data.

*Using the cassette tape storage and retrieval commands and
statements, you can save data for later use.

*with the formatting capabilities of the PRINT statement, you
can control the appearance of numeric output.

*Using time and space constraints in the INPUT statement, you
can control the response to an INPUT prompt.

*Through cursor-controlling statements and functions, you can
draw on the screen.

*Calling upon commands as statements in a program, you can set
system characteristics, leave BASIC, and delete the program.

*With the error control statements, you can predetermine a
course of action if an error should occur in a program.

5.1. SUBROUTINES

If you have a particular task that must be performed several
times during the execution of a program, you can write a
subroutine to perform that task and then simply activate the
subroutine at the appropriate time. When a subroutine is called
from any point in the program, the statements of the subroutine
are executed and then control returns to the statement following
the calling statement. Variables are not reset or redefined
before or after a subroutine's exection.

In Extended BASIC, subroutines are called by specifying the
first statement number of the routine in a GOSUB or ON...GOSUB
statement. Control returns to the statement after the calling
statement when a RETURN statement is encountered.

5-2 BASIC

GOSUB Statement

General form:

GOSUB n Executes the subroutine beginning
at statement n.

statement number

Example:

 10 GOSUB 270

The GOSUB statement causes immediate execution of the subroutine
starting at the specified statement number. After the sub-
routine has .been executed control returns to the statement
following the GOSUB statement. For example:

 .
 .
100 P = 2000, Y = 5, R = .06
110 GOSUB 200
120 PRINT "THE PRINCIPAL AFTER 5 YEARS IS "; P
 .
 .
200 REM: This subroutine finds the principal after
210 REM: Y years on an R% investment of P dollars.
220 FOR N = 1 TO Y Sub-
230 P = P + R*P routine
240 NEXT N
250 RETURN

Calls to subroutines can be included within a subroutine. Ex-
tended BASIC allows any level of nested subroutines. Nested
subroutines are executed in the order in which they are entered.
For example:

 .
 .
100 GOSUB 200
110 PRINT A
 .
 .
200 FOR I = 1 TO R Execution of this subroutine is
210 IF I = R GOSUB 370 interrupted when I=R. After the
220 A = A + X^2 subroutine at 370 is executed,
230 NEXT I statements 220 - 240 are executed
240 RETURN and control returns to statement 110
 .
 .
370 INPUT "J=",J This subroutine is executed before
 . the execution of the subroutine at
 . 200 is complete.
430 RETURN

5-3 BASIC

RETURN Statement

General form:

RETURN Transfers control to the statement
following the GOSUB or ON...GOSUB
statement that called the subroutine.

Example:

 100 RETURN

The RETURN statement causes the exit of a subroutine. When a
GOSUB or ON...GOSUB statement transfers control to a set of
statements ending with a RETURN statement, the line number of
the calling statement is saved and control is returned to that
line plus one when the RETURN statement is encountered.

A RETURN statement will terminate as many FOR/NEXT loops as
necessary to return to the calling GOSUB statement. RETURN
statements can be used at any desired exit point in a subrou-
tine. For example:

 10 GOSUB 50
 .
 .
 50 X = 700
 60 FOR I = 1 TO X
 .
 .
 90 RETURN
100 NEXT I

 10 X = 100
 20 FOR I = 1 TO X
 .
 .
100 GOSUB 150
 .
 .
150 INPUT X,Y,Z
160 IF X = 0 THEN RETURN
 .
 .
200 RETURN
210 NEXT I

5-4 BASIC

ON...GOSUB Statement

General form:

ON exp GOSUB n1, n2, ... Executes the subroutine begin-
ning with statement n1 if the

state- value of exp is 1, executes the
numerical ment subroutine beginning with
expression number statement n2 if exp is 2, etc.

Examples:

 10 ON X GOSUB 120, 150
 100 ON S+A/B GOSUB 500
 200 ON N GOSUB 90, 500, 10

The ON...GOSUB evaluates, then truncates the expression (exp).
If the value is 1, the subroutine starting at statement n1 is
executed; if 2, the subroutine starting at statement n2 is exe-
cuted; etc. If the truncated value of exp is less than 1 or
greater than the number of statements specified, BASIC executes
the next line. After the subroutine has been executed, control
is transferred to the statement following the ON...GOSUB state-
ment. For example:

 5 INPUT "ENTER TWO NUMBERS ",X,Y
 10 PRINT "DO YOU WANT TO ADD (1), SUBTRACT (2),"
 20 PRINT "MULTIPLY (3), OR DIVIDE (4) THE NUMBERS"
 30 INPUT I
 40 ON I GOSUB 100,200,300,400
 50 PRINT "THE ANSWER IS ";A
 60 END
100 A = X+Y
110 RETURN
200 A = X-Y
210 RETURN
300 A = X*Y
310 RETURN
400 A = X/Y
410 RETURN

5.2. FUNCTIONS

Functions are similar to subroutines in that they perform a task
that may be required several times in a program. They differ in
that functions can be used in expressions. After execution, the
function itself has a value. For example:

10 LET A = SQR(176) + B

SQR is the square root function and 176 is its argument. When
statement 10 is executed, BASIC computes the square root of 176
and assigns the value to SQR(176); then B is added and the sum
is assigned to A.

5-5 BASIC

SQR is one of the many functions supplied by Extended BASIC.
Others are presented on the pages that follow.

Besides the functions supplied by BASIC, you can create your own
one-line or multi-line functions using statements described in
this unit.

5.2.1. General Mathematical Functions

General forms:

ABS(exp) The absolute value of exp.
EXP(exp) The constant a raised to the power exp.
INT(exp) The integer portion of exp.
LOG(exp) The natural logarithm of exp.
LOG10(exp) The logarithm base 10 of exp.
RND(exp) A random number between 0 and 1.

exp may be 0, -1, or n.
SQR(exp) The square root of exp (exp must be

positive).
SGN(exp) The sign of the value of exp; 1 if

positive, -1 if negative, 0 if zero.
exp is a numerical
expression in all
these functions.

Examples:

 10 LET X = EXP(X) - LOG(Y)
 100 PRINT "THE ANSWER IS "; INT(A*B)
 200 IF ABS(X^2-Y^2) > 10 THEN 250

The use of all these functions in a program is straightforward
except for the RND function. This function behaves as if a
table of random numbers were available, and an entry in the
table were returned. The selection of which entry in the table
is returned depends on the argument:

 Argument Value returned

 0 Returns the next entry in the table
 -1 Returns the first entry, and resets the
 table pointer to the first entry
 n Returns the entry following n

Although the random numbers generated are between 0 and 1,
numbers in any range may be obtained with an appropriate
expression. The following line gives random integers between 1
and 99:

30 X = INT(RND(0)*100)

5-6 BASIC

5.2.2. Trigonometric Functions

General forms:

SIN(exp) The sine of exp radians.
COS(exp) The cosine of exp radians.
TAN(exp) The tangent of exp radians.
ATN(exp) The arctangent of exp; the answer is in

radians.
exp is a numerical expression
in all these functions.

Examples:

 10 PRINT "THE SIN OF ";Y;" IS ";SIN(Y)
 100 LET R = SIN(A)^2 + COS(A)^2
 200 IF ATN(14.7) < 1 THEN 400

5.2.3. User-Defined Functions

You can define your own functions making them available for use
in the current program. A function's value is determined by
operations on one or more variables. For example, the
definition below determines that any time FNA is specified with
two values, it will compute the sum of the squares of those
values:

10 DEF FNA(X,Y) = X*X + Y*Y (X*X and Y*Y are used instead
of X^2 and Y^2 because the *
operator is faster than the ^
operator for squaring numbers.)

The function defined in statement 10 can be used as follows:

100 A = 50, B = 25
110 PRINT FNA(A,B)

When executed, statement 110 will print 50 squared + 25 squared,
or 3125.

The rest of this unit describes in detail how to define and use
functions of one or more lines.

5-7 BASIC

DEF Statement

General forms:

DEF FNvar(var1, var2, ...) = exp
expression

variable
Defines a one-line function
that evaluates exp based on
the values of var1, var2, etc.

DEF FNvar(var1, var2, ...)
 . variable
 .
RETURN exp Defines a multi-line function
 . that evaluates exp based on
 . expression the values of var1, var2, etc.
FNEND

Examples:

 10 DEF FNX(A,B,C) = A*B/SIN(C)

 100 DEF FNA1(R,S)
 110 X=0
 120 FOR I = 1 TO R
 130 X = X + R*S
 140 NEXT I
 150 RETURN X
 160 FNEND

The variables and expression used to define a single-line or
multi-line function can be either numeric or string. However,
the variables and expression must agree in type. That is, if
you are defining a numeric function, use a numerical variable in
the function's name, and return a numeric value as the value of
the expression. The same is true for string functions.
Examples are:

 10 DEF FNA1(U) = SIN(U) + COS(U)
100 DEF FNA1$(U$) = "NON"+U$
200 DEF FNZ(X$) = VAL(X$(2, 4))

In multi-line function definitions, the value returned is the
value of the expression on the same line as the RETURN state-
ment. RETURN statements can be used to exit multi-line function
definitions as desired. Each definition must end with a FNEND
statement. For example:

5-8 BASIC

100 DEF FNL(A,B,X,Y)
110 S = 0
120 FOR I = 1 TO X
130 S = S + X*Y
140 NEXT I
150 IF A > B THEN RETURN S - A -The value of FNL will be S-A.
160 RETURN S-B -The value of FNL will be S-B.
170 FNEND

If the function statements create a new variable, the value of
this new variable will be undefined in the calling program. If
the function uses variables which have been defined in the main
program, their value after execution of the function will be
changed if execution of the function changed them.

FNvar Function Call

General form:

FNvar(var1, var2, ...) Evaluates a user-defined
function.

variable

Examples:

 10 PRINT FNX(A,B)
 100 A1 = FNA1(X1,X2,X3)

The FNvar function call evaluates a user-defined function with
the same name and assigns the computed value to itself. For
example:

 10 DEF FNB(I,J)
 20 FOR X = 1 TO I
 30 FOR Y = 1 TO J
 40 Z = Z + Y Function definition
 50 NEXT Y
 60 NEXT X
 70 RETURN Z
 80 FNEND
 90 LET U = 2, V = 3
100 PRINT FNB(U,V)

Function
call

This program prints 12 (1 + 2 + 3 summed twice). If X and Y
were already defined in the main program, this function will
change their values.

5-9 BASIC

5.3. CHARACTER STRINGS

A character string is simply a sequence of ASCII characters
treated as a unit. Extended BASIC performs operations with
strings as it does with numbers. The string operations use
string constants, string variables, string expressions, and
string functions.

5.3.1. String Constants

You have encountered string constants earlier in this text.
THE ANSWER IS in the statement below is a string constant:

10 PRINT "THE ANSWER IS ";X+Y

A string constant is indicated in a program by enclosing the
characters of the string in quotation marks. However no quo-
tation marks are used when entering a string value from the
terminal. Quotation marks cannot be included as part of a
string constant.

The size of a string constant is limited only by its use in the
program and the memory available.

Some examples of string constants are:

"JULY 4, 1776"
"Dick's stereo" A string with no characters
"APT #" is called the null string.
""

In Extended BASIC all lowercase characters are automatically
converted to uppercase except for characters in strings or REM
statements. Lowercase characters in strings can be entered from
or displayed on terminals having lowercase capability. For
example:

INPUT S$ This string has UPPER- and lowercase characters.
PRINT S$ This string has UPPER- and lowercase characters.

Teletypes print lowercase characters as their uppercase
equivalents. If you have a terminal without lowercase
capability, refer to the terminal's users guide to find out how
it treats lowercase characters.

Control characters can be included in a string. They may be
entered by pressing the control key and the character simul-
taneously if the character has no immediate function. Or
control characters can be typed as &c where c is the character.
When a control character is printed, the symbol for the
character is displayed or the character's function is performed
if it has a function. For example:

10 PRINT "ALPHA &M&JBETA &M&JGAMMA"

prints the following when executed because the function of
control-M is carriage return and the funtion of control-J is
line feed:

5-10 BASIC

ALPHA
BETA
GAMMA

To print a single ampersand, use this form: "&&". For a list of
symbols and functions of control characters, see Section VII of
the Sol Systems Manual.

5.3.2. String Variables

A string variable is a variable that can be assigned a string
value. To distinguish it from a numerical variable, it's symbol
is a single letter followed by a dollar sign or a letter, digit,
and then a dollar sign. For example: A$, S$, C0$, Z2$

A string variable can contain one to ten characters unless it's
maximum size has been declared as a value larger than 10 in a
DIM statment.

The assignment statement assigns values to string variables as
it does with numerical variables. For example:

 10 LET A$ = "MISSOURI"
100 S$ = A$
200 R$ = "BOX #", T$ = "Address"

5.3.3. String Expressions

String expressions can include string constants, string
variables, and any of the string functions described later in
this unit. In addition they may include the + operator, which
means "concatenate" when used with strings. For example:

PRINT "ARGO"+"NAUT" prints ARGONAUT

S$ = "REASON"
PRINT S$ + "ABLE" prints REASONABLE

String expressions are treated like numerical expressions in the
LET, INPUT, READ, DATA, and PRINT statements. For example:

 5 PRINT "WHAT IS THE SOURCE OF THE DATA"
 10 INPUT S$
 20 IF S$ = "DATA" THEN 70
 30 INPUT X$, Y$, Z$
 40 PRINT "THE LAST VALUE READ WAS ";Z$
 60 END
 70 READ X$, Y$, Z$
 80 GO TO 40
100 DATA "FIRST", "SECOND", "THIRD"

The treatment of strings in logical expressions differs from
that of numbers as follows:

1. Strings can be compared using relational operators only
 within IF statements.
2. No logical operators are allowed in string expressions.

5-11 BASIC

When strings are compared in an IF statement, they are compared
one character at a time, left to right. If two strings are
identical up to the end of one of them, the shorter is logically
smaller. The characters are compared according to their ASCII
representations (see Appendix 4).

Examples:

"ASCII" is greater than "073234"
"ALPHA" is greater than "AL"
"94.28" is greater than "# and name"

The program below shows how an IF statement can be used to
compare string values:

 10 INPUT "WHAT RANGE OF NAMES DO YOU WANT? ",A$,Z$
 20 FOR I = 1 TO 35
 30 READ S$
 40 IF S$ < A$ THEN 60 Notice that 40 and 50 cannot
 50 IF S$ <= Z$ THEN PRINT S$ be combined because logical
 60 NEXT I operators are not allowed.
100 "Smith, J.B.", "Ronson, C.H.", "Peale J.P.", "Adams, J.Q."

String DIM Statement

General form:

DIM var(n) Specifies the maximum size of a
integer string that can be contained in var.

string n is the maximum number of characters

Examples:

 10 DIM S$(20)
 100 DIM A$(72),B$(55),C$(15)

The DIM statement for strings declares the maximum size of a
string variable. The maximum size is specified as an integer
between 1 and the amount of memory available.

The actual length of the variable at any time is determined by
the size of the string currently assigned to it. If a string
value with more characters than allowed by the DIM statement is
assigned to a variable, the rightmost characters are truncated.
For example:

10 DIM S$(12)
20 LET S$ = "ALPHA IS THE FIRST SERIES"
30 PRINT S$

When executed, this program prints "ALPHA IS THE", the first 12
characters of the string constant.

5-12 BASIC

SEARCH Statement

General form:

SEARCH exp1, exp2, var Searches exp2 for the first
occurance of exp1 and sets var

string to the number of the position
expression numeri- at which it is found or 0 if

cal variable it is not found.

Examples:

 10 SEARCH "CAT",M$,N
 100 SEARCH A$, R$, I

The SEARCH statement evaluates exp1 and looks for that string as
all or part of the value of exp2. If it is found, its location
is given by var. For example:

10 LET X$ = "ANOTHER"
20 LET Y$ = "THE"
30 SEARCH Y$, X$, A
40 PRINT A

When executed, this program prints 4 as the value of A because
THE begins at the fourth position of ANOTHER.

If exp1 is not found the value of var is 0.

5.3.4. String Functions

The functions described in this unit deal with characters and
character strings. The substring function lets you extract or
alter part of a string. The LEN function gives the current
length of a character string. The ASC and CHR functions perform
conversions between characters and their USASCII codes. The
VAL and STR functions convert numbers to strings and vice
versa. Finally, the ERR(0) function gives the last error mes-
sage to appear.

5-13 BASIC

Substring Function

General forms:

var(n1, n2) Extracts characters n1 through
n2 of the string contained in

positive, var.
string nonzero number
variable

var(n1) Extracts characters n1 through
the last character of var.

Examples:

 10 LET S$ = X$(2,4)
 100 LET A$ (1, 3) = "NON"
 200 INPUT X$(7)
 300 LET I$ = L$ + M$(1,5)

The substring function extracts part of a string allowing that
section to be altered or used in expressions. The portion of a
string to be extracted is indicated by subscripts between 0 and
32768. Noninteger subscripts are truncated to integers.

User: LET A$ = "HORSES" <CR>
PRINT A$(3, 7) <CR> SES Characters 4 through the end

of the string are extracted.

If the subscripts specify a substring larger than the current
string or outside the bounds of the current string, an error
results. For example, statements 20 and 30 below result in
errors:

10 LET X$ = "TERMINAL"
20 LET Y$ = X$(1,9)
30 LET Z$ = X$(7,10)

Substrings can be used to change characters within a larger
string as shown in the example below:

User: 100 A$ = "abcdefgh" <CR>
200 A$ (3, 5) = "123" <CR>
300 PRINT A$ <CR>
RUN <CR>

BASIC: ab123fgh

5-14 BASIC

LEN Function

General form:

LEN(var) Finds the number of characters in
the string currently contained in

string var.
variable

Examples:

 10 PRINT LEN(S$)
 100 IF LEN(X1$) > 10 THEN 75

The LEN function supplies the current length of the specified
string. The current length is the number of characters assigned
to the string, not the dimension of the string. For example:

10 DIM S$(15)
15 LET S$ = "COW"
20 PRINT LEN(S$)

When executed, this program prints 3, the length of the string
COW.

ASC and CHR Functions

General forms:

ASC(exp) Supplies the USASCII code for the
first character in the string ex-

string ex- pression exp.
pression

CHR(exp) Supplies the character whose
USASCII code is given by exp.

numerical
expression

Examples:

 10 LET I = ASC("%")
 100 LET I$ = CHR(70)
 200 IF ASC(X$) = 65 THEN PRINT "A"

The ASC and CHR functions perform conversions between characters
and their USASCII equivalents. ASC returns the USASCII code for
a character whose value is given by a string expression and CHR
returns a character whose USASCII code is given by the value of
a numerical expression. A table of USASCII codes is presented
in Appendix 4.

5-15 BASIC

VAL and STR Functions

General forms:

VAL(exp) Supplies the numerical value of the
string whose value is given by exp.

string expression
that can be converted
to a decimal number

STR(exp) Supplies the string value of the
number whose value is given by exp.

numerical
expression

Examples:

 10 X = I * VAL(J$)
 100 PRINT VAL(A$)
 200 IF VAL(A$) = 13.2 THEN END
 300 X$ = A$ + STR(I)

The VAL and STR functions perform conversions between decimal
numbers and strings that can be converted to numbers. For
example:

10 LET X$ = "33.4"
20 A = 76.5 + VAL(X$)
30 PRINT STR(A)

When executed, this program adds 33.4 to 76.5 and assigns the
value, 109.9, to A. Then the STR function converts A to a
string and prints the string "109.9".

The STR function produces a string that represents the result of
its argument, based on the current default number printing
format set by a PRINT statement. For example:

User: PRINT %#10F3 <CR>
PRINT STR(100.01) <CR>

BASIC: 100.01 Note the use of the 10 character field

User: PRINT %#$C
PRINT STR (99999999)

BASIC: $99,999,999 Note the use of the dollar sign $ and
 commas, as specified in the first

PRINT statement.

The VAL function evaluates the string argument as a number.
Evaluation stops on the first character which is not legal

5-16 BASIC

in an arithmetic constant as described in Section 2.3.1. For
example:

User: PRINT VAL("$99,999,999") This statement will result
an IN error due to the $.

PRINT VAL("99,999,999") Evaluation will stop at the
first comma:

BASIC: 99

ERR(0) Function

General Form:

ERR(0) Returns a string consisting of
the last error message.

Example:

 10 A$ = ERR (0)
 20 IF A$(1,2)= "RD" THEN PRINT "TRY TO READ TAPE AGAIN"

The ERR(0) function returns a USASCII string constant containing
the last error message which appeared on the user's terminal.
If the ERRSET statement kept the error message from appearing,
then the string contains the error message which would have
appeared. The argument 0 must be given. Since error messages
can take two forms: "XX ERROR", or "XX ERROR IN LINE 00000",
care must be used in comparing the ERR(0) string to other
strings. The first two characters in the error message are
sufficient to identify which error has occurred, and may be used
in comparisons. In the example above, the error message string
is stored in string variable A$, then the first two characters
of of A$ are compared with "RD" (tape read error). If there is
a match, then a message appears on the terminal telling the user
to try reading the tape again. Similar statements can be used
to branch to special routines when certain errors occur.

5.4. DIMENSIONED VARIABLES

You can assign many values to a single variable name by allowing
additional space for that variable. Such a group of values is
called an array and each individual value is an element of that
array. The values can be referred to by using subscripts with
the variable name. For example, if A1 is an array with 10
elements, individual elements of A1 can be referred to as
follows:

A1(1) refers to the first element.
A1(2) refers to the second element.
 .
 .
A1(10) refers to the last element.

5-17 BASIC

An array can have more than one dimension as in the following
two-dimensional, 4 by 3 array:

10 15 30
8.2 7.4 8.6
11.4 4.0 15
8 11 8.4

A two-dimensional array is referred to as a matrix. The ele-
ments in the example above are referred to by using two sub-
scripts. For example, if the name of the preceding array is T:

T(1,1) = 10
T(1,2) = 15
T(1,3) = 30
T(2,1) = 8.2
 .
 .
T(4,3) = 8.4

To assign additional space to a variable name so that it can
contain an array of values, you must dimension it with the DIM
statement. The number of dimensions is determined by the number
of subscripts specified in the DIM statement.

DIM Statement

General forms:

DIM var(exp1,exp2,...) Defines an array with one or
more dimensions. The size of

numerical the array is (exp1*exp2*...)
numer- expression elements.
cal variable

DIM var1(exp1,exp2,...),var2(exp3,exp4,...),...

Defines one or more arrays.
String dimension expressions can
be included as well.

Examples:

 10 DIM A(100)
 100 DIM A1(4,5),I(L,M-L),J(2,3,10)
 200 DIM X(100),S$(72),Y(I,J,K)

The DIM statement allots space for an array with the specified
variable name. The number of dimensions in the array equals the
number of expressions in parentheses following the variable
name. The number of elements in the array is the product of the
expressions.

5-18 BASIC

Elements of an array are referred to as follows:

 var(exp1, exp2, ...)

For example:

 10 DIM R(5,5)
 20 FOR I = 1 TO 5
 30 FOR J = 1 TO 5 These statements store 25
 40 READ R(I,J) values in matrix R.
 50 NEXT J
 60 NEXT I
 70 INPUT "WHICH ELEMENT? ",A,B
 80 PRINT R(A,B)
100 DATA 7.2, 8.4, 9.4, 8.6, 7.2
110 DATA 3.4, 3.7, 3.8, 9.5, 7.8
120 DATA 7.7, 2.1, 3.2, 5.4, 5.3, 7.6, 5.3, 6.4, 2.1, 2.0
130 DATA 4.8, 9.7, 8.6, 8.2, 11.4

When executed, this program prints the requested elements as
shown below:

User: RUN <CR>
BASIC: WHICH ELEMENT? 2,3 <CR>

3.8
User: RUN <CR>
BASIC: WHICH ELEMENT? 3,2 <CR>

2.1

The amount of storage necessary for a given array is given by:

9 + (dimension1) * (dimension2) * (dimension3)etc.

The amount of storage that can be assigned to a variable is
determined by the total storage available to BASIC. The memory
limit for BASIC can be changed using the command:

SET ML = exp
numerical expression

To find out how much free storage you have left at any time, use
the FREE(0) function, which prints the number of bytes of space
left for program and variables. For example:

PRINT FREE(0) <CR>
2960

5.5. USING CASSETTE TAPE FOR DATA STORAGE

The statements described in this unit allow you to store data on
cassette tape and retrieve it. When using tape, you have the
responsibility of rewinding the tape, positioning it past the
leader before writing on it, and not writing over data you want
to keep. Review unit 3.4.1 about working with cassette
recorders before storing data on tape.

5-19 BASIC

All data on a file is stored in string form. String storage re-
quires one byte of storage for each character. The number of
bytes of tape storage needed to store a string is the number of
characters in the string plus one.

Files are divided into blocks of 256 bytes. The number of
blocks in a file is determined by the length of the file.
There is an end-of-file marker after the last block of the file.

In BASIC you can control your cassette recorder or any other
motor control unit. The TUOFF and TUON commands turns such
units off and on. Their forms are:

TUOFF Turn off all motor control units.
TUON exp Turn on motor control unit exp.

numerical
expression

The TUOFF and TUONN commands can also be used as statements to
control motor control units from a program. Their use as state-
ments is described later in this unit.

FILE Statement

General form:

FILE #n;"name",access {,var} Requests read(1), write(2),
1,2, or read/write(3) access to

numer- or 3 the specified file. If
ical present, var contains the
expression 1 to 5 access granted.

characters numerical
variable

Examples:

 10 FILE #1;"DAT1",2
 100 FILE #3; "SAL", 3, A

5-20 BASIC

The FILE statement requests access to the named file and deter-
mines that that file will be referred to as number n in subse-
quent statements. The value specified for access should be:

1 for read
2 for write
3 for read/write

If write access is requested, the name specified in the FILE
statement will be written on the file as an identifier when a
PRINT statement writes on the file.

When the FILE statement is executed, it tells you to prepare a
tape for reading or writing as follows:

PREPARE TAPE UNIT n FOR WRITING TO: name
or
PREPARE TAPE UNIT n FOR READING FROM: name

To prepare the tape, position it before the file to be read or
written, push the PLAY or RECORD button, and strike any key to
tell BASIC the tape is ready.

PRINT Statement

General form:

PRINT #n; exp1, exp2, ... Sequentially prints the values
of exp1, exp2, etc., on the

expres- specified file.
numerical sion
expression

Examples:

 10 PRINT #3; A,B,S$,"CONST",74.8 + B*C
 100 PRINT #1; X(I)

The PRINT statement sequentially prints values on the specified
file of a cassette tape, starting after the last item previously
read or printed. The first execution of a PRINT statement after
a FILE statement causes the name given in the FILE statement to
be written on the file as an identifier. This name can be re-
ferred to when the file is read later.

The value of the file number n is any number that can be trunca-
ted to an integer between 1 and 254.

5-21 BASIC

For example:

User: LIST <CR>
 10 FILE #3; "EMP",2
 20 DIM S$(30)
 30 PRINT "ENTER EMPLOYEE NAMES AND SS #'S"
 40 INPUT S$
 50 IF S$ = "END" THEN CLOSE #3: END
 60 PRINT #3; S$
 70 GO TO 40
RUN <CR>

BASIC: PREPARE TAPE UNIT 1 FOR WRITING TO: EMP
User: (Positions tape, pushes RECORD, and strikes a key.)
BASIC: ENTER EMPLOYEE NAMES AND SS #'S
User: ?John Dixon 343338749 <CR>

?Alfred Dill 322679494 <CR>
 .
 . Periodically there is a pause while data
?END <CR> is written on the tape.

BASIC: READY

READ Statement

General form:

READ #n; var1, var2, ...{:statement1:statement2:...}

numer- variable Reads values from file n and
ical assigns them to var1, var2,
expression etc.; the optional statement

list is executed if an end of
file is encountered.

Examples:

 10 READ #2;X,Y,Z,A,B
 100 READ #1;S(I) : PRINT "EOF" : EXIT 200

The READ statement sequentially reads values from the specified
file and assigns them to the indicated variables. A list of
statements separated by colons can be included in the READ
statement. The statements in the list are executed only if an
end of file is encountered during execution of the READ
statement.

For example:

 10 FILE #1; "VAL",1
 20 DIM A(500)
 30 FOR I = 1 TO 500
 40 READ #1;A(I) : EXIT 200
 50 NEXT I
 .
 .
200 PRINT I;" VALUES READ FROM VAL"

5-22 BASIC

REWIND Statement

General form:

REWIND #n1,#n2,... Rewinds the specified files.

numerical expression

Examples:

 10 REWIND #3
 100 REWIND #I-1,#5

The REWIND statement activates the cassette recorder so that you
can rewind tape at the appropriate time. The following message
is printed:

PREPARE TAPE UNIT n FOR REWINDING

As soon as you have rewound the tape, strike any key to tell
BASIC to proceed.

CLOSE Statement

General form:

CLOSE #n1,#n2, ... Closes the specified files.

numerical expression

Examples:

 10 CLOSE #3
 100 CLOSE #I-J,#I+J,#1

The CLOSE statement makes the specified files unavailable for
reading or writing. They cannot be accessed again until another
FILE statement requests access. For example:

 .
 .
110 FILE #1; "NAMES", 2
120 PRINT #1; N$
 . Here file #1 refers to a file
 . called NAMES.
200 CLOSE #1
210 FILE #1; "SALS", 2
 . Here file #1 refers to a file
 . called SALS.

5-23 BASIC

TUOFF and TUON Statents

 General forms:

 TUOFF Turns off both tape motor control
 units.
 TUON exp Turns on tape motor control unit

 numerical exp. exp must evaluate as 1 or 2.
 expression

 Examples:

 10 TUON 1
 100 TUOFF
 200 TUON K-1

The TUOFF and TUON statements let you turn the cassette reader
off and on from your program. They actually control two reed
relays, which have isolated low-power contacts appearing at
J8 and J9 of the Sol Terminal Computer, or J1 and J2 of the CUTS
module. The closure of these contacts under program control can
be used for general purpose control applications, provided that
that extra power handling circuitry using relays or semiconduc-
tors is used when necessary. The reed relay contacts are SPST
and will handle .5 Amp, 100 VDC, with a maximum of 10 watts for
a resistive load.

For example:

10 DIM A(100)
20 TUON 1
30 FOR I = 1 TO 100
40 READ A(I)
50 IF A(I) = 0 THEN TUOFF : END
60 NEXT I
70 DATA 1,2,3,4,5,6,7,8,9,0

EOF Function

General form:

EOF(file number) Supplies the status of the specified
file.

numerical expression

Examples:

 10 PRINT EOF(2)
 100 IF EOF(I) = 4 THEN 150

The EOF function supplies the current status of the specified
file as follows:

5-24 BASIC

 Value of EOF Meaning

 0 File number was not declared.
 1 The last operation was FILE.
 2 The last operation was READ.
 3 The last operation was PRINT.
 4 The last operation was REWIND.
 5 Not used.
 6 The last operation was READ EOF.

5.6. CONTROLLING THE FORMAT OF NUMERIC OUTPUT

In Section 4 the PRINT statement was described in its simplest
form, in which the output is automatically formatted. Addi-
tional format specifiers may be added to the PRINT statement
which give great control over the format.

Formatted PRINT Statement

General form:

PRINT exp, exp, ... format element, exp, exp, ...

expressions not expressions
affected by the affected by the
format element format element

Or more generally:

PRINT ele, ele, ele, ele....

commas or semicolons may separate
elements

elements consisting of:
numeric expressions,
string expressions, or
format elements

Examples:

 10 PRINT A; %C8I; SQR(2 + C); %#10F3
 20 PRINT %Z5F1; ((A=12) AND B), %D, A, B,
 30 PRINT %; A(1, 1); "next is"; B(2,2)

The general form consists of zero or more expressions to be
printed according to default format, followed by a format
element, followed by one or more expressions to be printed ac-
cording to the format specified in the format element. The same
PRINT statement can also contain additional format elements
which control additional expressions which follow them. The for-
mat element produces no printed results of its own; it controls

5-25 BASIC

the form in which subsequent numbers are printed. A format ele-
ment controls only the expressions following in the same PRINT
statement, up to the next format element, if any. Using a a
special format option it is possible to redefine the default
format used in all following PRINT statements which contain
expressions not controlled by a specific format element.

A format element has the general form:

%{format options}{format specifier}

The percent sign % is required, and distinguishs the format ele-
ment from an expression to be printed. Format options, which
are not required, add special features such as commas, and
define the default format. The format specifier, also not
required, defines:

1) The number of columns to be occupied by a PRINTed
expression (field width),

2) The type of number to be printed: integer, floating point,
or exponential, and

3) The number of places to the right of the decimal point to
be printed.

The following format options are available:

Option Purpose

$ Places a dollar sign $ in front of the number

C Places commas (,) every three places as
required, for example: 3,456,789.00

Z Suppresses trailing zeros after the decimal
point.

+ Places a plus sign + in front of all positive
numbers. (A minus sign - is always printed in
front of negative numbers.)

Sets the format element containing it as a new
default format used by subsequent PRINT
statements, as well as by expressions
immediately following.

D Resets the format to the current default.
Since the default format is already defined,
this option is used alone only: %D is the
complete format element.

5-26 BASIC

Only one format specifier may appear in a format element.
Format specifiers have the following four forms:

Specifier Format

nI Integer. Numbers will be printed in a field
of width n. n must be between 1 and 26.
If the value to be printed is not an integer,
an error message will be printed.

nFm Floating Point. Numbers will be printed in a
field of width n, with m digits to the right
of the decimal point. n must be between 1 and
26, and m must be between 1 and n. Trailing
zeros are printed to fill width m, unless the
Z option is specified. If the specified field
can not hold all the digits in the value to
be printed, the value is rounded up to fit.

nEm Exponential. Numbers will be printed in a
field of width n, with m digits to the right
of the decimal point. At the end of the field
five characters will be printed containing the
the letter E, a plus or minus sign, and space
for an exponent of one to three digits. The
exponent may range from -126 to +126. One
and only one digit is printed to the left of
the decimal point. The field width n must be
at least 7 to contain one significant digit
plus the 5 characters of the exponential no-
tation. n must be from 7 to 26, and m must
be from 0 to n. Here is an example of a num-
ber printed in 10E3 format: 1.234E-123. If
the specified field can not hold all the di-
gits in the value to be printed, the value is
rounded up to fit.

none Free Format. If a format element consisting
of a percent sign alone is used, the format
will become the free format as used in the
simple unformatted PRINT statement. In free
format, integer, floating point, or exponent-
ial format is automatically selected depending
on the value of the number to be printed, and
a field width sufficient to hold all the di-
gits of the number is used. The format options
may be added to free format, by using a per-
cent sign followed by one or more format op-
tions, with no format specifier.

The field width n in the format specifiers above must be large
enough to hold all the characters to be printed, including
signs, decimal points, commas, dollar signs, and exponents. If
the field width is larger than necessary to contain all the
characters to be printed, extra blank spaces are added to
the left of the printed characters to fill the field. (In
exponential format, blanks are added between the number and

5-27 BASIC

its exponent.) Extra field width can be used to create columns
of printed output spaced at desired intervals. If semicolons
are used to separate the format elements and expressions in a
PRINT statement, the field widths given in the format specifiers
will be adjoining in the output. This does not mean that num-
bers printed will have no spaces in between; that depends on
whether the number fills its field.

If commas are used to separate the format elements and expres-
sions, there may be extra space added between the fields. The
total width of the output is tabulated at fixed 14-character
intervals. If a given number has not used the full 14 charac-
ters, the field for the next number will begin at the next 14-
character interval. In other words, if field widths of 14 or
less are used, the numbers will appear in 14-character columns.
If field widths of 15 to 26 are used, the numbers will appear in
28-character columns. A mixture of semicolon and comma separat-
ors may be used to give variable spacing.

Normally, after a PRINT statement has been executed, the cursor
or print head moves to the beginning of the next line, so that
the output from the next PRINT statement appears on a new line.
If a semicolon is used at the end of a PRINT statement, the
return of the cursor or print head is inhibited so that the
output from the next PRINT statement will appear on the same
line, If a comma is used at the end, the cursor or print head
advances to the beginning of the next 14-character interval, as
when commas separate elements within the PRINT statement.

Here are some examples of useful format elements:

MONATARY FORM:

%$C11F2
floating point form, eleven characters in width,
with two of those characters to the right of the
decimal point

commas will separate every three digits

dollar signs will be printed in front of each number

Examples of output:

$200.00 $9,983.00
 $35.34 $100,000.00

SCIENTIFIC FORM:

%Z15E7
Exponential notation, fifteen characters in width,
with seven of those characters to the right of the
decimal point

Trailing zeros will be suppressed

5-28 BASIC

Examples of output:

1.1414 E+ 2
9.4015687E-104
3. E+ 0

The sample program segment below illustrates how format elements
can interact:

10 PRINT %#$C11F2; This statement sets the monatary form given
above as the new default format.

20 PRINT A, 42.3, P/I
The values of these expressions will
be printed according the default
format in statement 10.

30 PRINT B9; $+26F8; P, I; %D; P/I
B9 will be printed according to state-
ment 10. %+26F8 sets a new format for
P and I which follow it. %D resets
the format to the default of statement
10. P/I is printed accordingly.

5.7. CONTROLLED INPUT

You can include parameters in the INPUT statement to control the
number of characters that can be entered from the terminal and
the time allowed to enter them. This feature is useful when you
want only certain types of answers to questions, or when testing
someone's ability to answer quickly.

5-29 BASIC

Controlled INPUT Statement

General forms:

INPUT, (#chars,t) var1, var2, ... Enters values from the
terminal and assigns

numerical them to var1, var2,
expression etc.; however, only

variable #chars characters can
typed by the user and
the user has t tenths
of a second to
respond.

INPUT (#chars,t) " message", var1, var2, ...
Same as above, but a

string message is printed as
constant a prompt before values
including are accepted from the
its quotes terminal, and before

timing begins.
Examples:

 10 INPUT (3,10) X
 100 INPUT (20,) N$, A$
 200 INPUT (,100) A, B, C
 300 INPUT (10,300) "WHAT IS THE DATE?" ,D$

The controlled INPUT statement lets you specify how many charac-
ters can be entered and how much time is allowed to respond.
As soon as #chars characters have been typed, BASIC generates a
carriage return and accepts no more characters. If the user
takes more than t tenths of a second to respond, BASIC assumes a
carriage return was typed.

If the value of #chars is 0, as many as 131 characters can be
entered. If the value of t is 0, the user has an infinite
amount of time to respond.

For example:
 5 DIM A$(3)
10 FOR X = 1 TO 9
20 FOR Y = 1 TO 9
30 PRINT X;" * ";Y;" = "
40 INPUT (3, 100) A$
45 A = VAL(A$)
50 IF A <> X*Y THEN PRINT "TRY AGAIN" : GO TO 30
60 NEXT Y
70 NEXT X

When executed, this program accepts a three-character answer
from the user and waits 10 seconds for a response.

5-30 BASIC

5.8. ERROR CONTROL

Using the error-control statements described below, you can tell
BASIC what statement to execute in the event of an error. The
ERR(0) function gives a string containing the last error mes-
sage.

ERRSET and ERRCLR Statements

General forms:

ERRSET n Determines that statement n will be
executed if an error is detected by

statement BASIC.
number

ERRCLR Clears the effect of the last ERRSET
statement.

Examples:

 10 ERRSET 75
 100 ERRCLR

The ERRSET statement lets you determine that a certain statement
will be executed when an error occurs. Once an error has
occurred, the ERRSET statement is no longer effective. The
ERRCLR statement erases the effect of the most recent ERRSET
statement.

ON...ERRSET Statement

General form:

ON exp ERRSET n1, n2, ... Establishes which statement
will be executed in the event

numeri- state- of an error. If exp is 1,
cal expression ment statement n1 is selected, if

number exp is 2, statement n2, etc.

Examples:

 10 ON I ERRSET 105,250,400
 100 ON A-J ERRSET 50, 300

The ON...ERRSET allows you to conditionally determine which
statement will be executed if an error occurs. Once an error
has occurred, the ON...ERRSET statement is no longer in effect.

5-31 BASIC

ERR(0) Function

General Form:

ERR(0) Returns a string consisting of
the last error message.

 Example:

 10 A$ = ERR(0)
 20 IF A$1,2 = "RD" THEN PRINT "TRY TO READ TAPE AGAIN"

The ERR(0) function returns a USASCII string constant containing
the last error message which appeared on the user's terminal.
If the ERRSET statement kept the error message from appearing,
then the string contains the error message which would have
appeared. The argument 0 must be given. Since error messages
can take two forms: "XX ERROR", or "XX ERROR IN LINE 00000" care
must be used in comparing the ERR(0) string to other strings.
The first two characters in the error message are sufficient to
identify which error has occurred, and may be used in compar-
isons. In the example above, the error message string is stored
in string variable A$, then the first two characters of of A$
are compared with "RD" (tape read error). If there is a match,
then a message appears on the terminal telling the user to try
reading the tape again. Similar statements can be used to
branch to special routines when certain errors occur.

5.9. COMMANDS CAN BE STATEMENTS AND STATEMENTS COMMANDS

There are a number of commands that can be included in programs
as statements. You have already encountered two: the TUON and
TUOFF commands. Most commands that an e statements are used
for system control. The SET commands set system characteristics
and the BYE and SCRATCH commands let you leave BASIC or erase
your program. Section 2.5, The Calculator Mode of BASIC, shows
how statements may be directly executed without being in a pro-
gram. Appendix 1, the command and statement summary, lists
which commands may be used as statements, and which statements
as commands.

5.9.1. The SET Commands

The SET commands let you determine system characteristics. Each
SET command except SET ML can be used as a statement in a pro-
gram. The SET commands are:

SET DS = exp Sets the video display speed to exp. The
larger the value of exp, the slower the
display speed. The default value is 0.

5-32 BASIC

SET IP = exp Sets the Solos/Cuter pseudo input port
to the value of exp.

SET OP = exp Sets the Solos/Cuter pseudo output port
to the value of exp.

SET DB = exp Displays the character whose USASCII
code is exp on the screen at the current
cursor position.

SET LL = exp Sets the line length for BASIC output to
exp.

numerical
expressions

SET ML = exp Sets the memory limit. BASIC will not
use addresses higher than exp for pro-
gram or data storage. Cannot be used
as a program statement.

Examples:

User: 10 SET LL = 10 <CR>
20 PRINT "THE LINE IS TOO LONG" <CR>
RUN <CR>

BASIC: THE LINE I
S TOO LONG

User: SET DB = 99 <CR>c

5.9.2. BYE and SCRATCH Commands

The BYE and SCRATCH commands can be used as statement, so you
can exit BASIC from a program or erase the current program. For
example:

10 PRINT "NOW I'M HERE"
20 PRINT "NOW I'M NOT"
30 SCRATCH

When executed, this program prints:

NOW I'M HERE
NOW I'M NOT

and then erases itself.

5.9.3. CURSOR CONTROL

You can control the position of the cursor or use it to draw on
the screen using the CURSOR statement and other devices
described in this unit. The current horizontal position of the
cursor or print head is given by the POS(0) function.

5-33 BASIC

CURSOR Statement

General form:

CURSOR {exp1}{,exp2} Moves the cursor to line exp1 and
and character exp2. If either is

numerical ommitted, the last value placed in
expression that position will be used. Exp1

can be any number 1 through 16, and
exp1 can be any number 1 through 64.

Examples:

 10 CURSOR I,J
 100 CURSOR FNA(L)
 200 CURSOR ,X*Y

You can use the CURSOR statement to position the cursor and then
use a PRINT or SET DB statement to display a character in that
position. With the SET DB statement, you can display any
character available on your video display. You can also print
any of the control characters that have an effect on the screen,
such as &K, which clears the screen.

For example:

10 PRINT "&K"
20 FOR I = .1 TO 3.14 STEP .1
30 LET X = SIN(I)
40 CURSOR I*10,X*10
50 PRINT "*"
60 NEXT I

POS(0) Function

General Form:

POS(0) Returns a number between 0 and
131, representing the current
horizontal postion of the cursor
or print head.

Example:

 10 IF (63 - POS(0)) < LEN(A$) THEN PRINT

In Extended BASIC a line of output from the PRINT statement can
be up to 132 characters long. The character positions are num-
bered 0 to 131 starting from the left. After a PRINT statement
and after some other types of operations, the cursor on the
video display (or the print head if the output device is a

5-34 BASIC

printer or teletype) is left in a new position. The value of
the POS(0) function is a number between 0 and 131 representing
the current position of the cursor (or print head). If the SET
LL = exp command or statement has limited the line length to
less than 132 characters, the value returned by the POS(0)
function will be limited to the new value.

Line length varies with output device. The video display of the
Sol Terminal Computer has a line length of 64 characters, but if
a line longer than 64 characters is printed, some of the extra
characters will be automatically printed on a new line. In the
example above the number of characters remaining on the line
(63 - POS(0)) is compared with a string A$ which will be print-
ed. If the string will not fit on the remainder of the line the
statement PRINT is executed which positions the cursor on the
beginning of a new line.

6-1 BASIC

SECTION 6

6. MACHINE LEVEL INTERFACE

One of the functions of BASIC is to isolate the user from the
operations and requirements of the specific computer on which he
is working. BASIC does all interpreting and executing of
commands and programs on whatever computer is in use, and the
user is free to concentrate only on the logical flow of his
program. He can ignore matters such as the absolute locations
of his program and data in memory, and the flow of input and
output through ports. This isolation could prevent the user
from dealing with programs not written in BASIC, and from
interfacing with other hardware and software, if special tools
were not available within BASIC for doing so.

BASIC provides three tools for addressing absolute memory loca-
tions, and three tools for using I/O ports. The POKE statement
stores data in a specified memory address, while the PEEK func-
tion reads data from a specified address. The CALL function
transfers program control to a routine outside of BASIC. The
OUT statement places a value in a specified I/O port, while the
INP function reads a value from a specified port. The WAIT
statement delays program execution until a specified value
appears in a port.

Remember that BASIC assumes all numeric expressions are decimal,
so all addresses and port numbers must be converted to decimal
before use. Appendix 5 contains a table for conversion between
hexadecimal and decimal numbers.

In the descriptions of syntax which follow, "numerical expres-
sion between 0 and 255" may be interpreted to mean "any expres-
sion allowed in BASIC, which, when evaluated, yields a decimal
value between 0 and 255.

6-2 BASIC

6.1. WRITING TO A PORT OR MEMORY LOCATION

POKE and OUT Statements

General forms:

POKE exp1, exp2 The value exp2 is stored in memory
location exp1.

numerical expression between 0 and 255

numerical expression from 0 to 65535

OUT exp1, exp2 The value exp2 is sent to I/O port exp2

numerical expressions between 0 and 255

numerical expression between 0 and 255

Examples:

 10 POKE 4095, 11
 100 OUT 248, 0

The POKE and OUT statements place a value between 0 and 255 in a
specified memory address or I/O port. Since the 8080 micropro-
cessor can address 65,536 memory locations, and has 256 ports,
these values are set as limits to the value of exp1. The value
of exp2 is converted to a one-byte binary value.

PEEK and INP Functions

General forms:

PEEK(exp) Supplies the numerical value contained
in memory location exp

numerical expression between 0 and 65535

INP(exp) Supplies the numerical value contained
in I/O port exp

numerical expression between 0 and 255

Examples:

 10 X = PEEK(4095)
 100 Y = INP(249)

6-3 BASIC

The PEEK and INP functions return values equal to the contents
of memory location or I/O port exp. Since the 8080 processor
can address 65,536 memory locations, and has 256 I/O ports,
these values are set as limits to the value of exp. One byte is
retrieved and its value interpreted as a number between 0 and
255.

CALL Function

General form:

CALL(exp1{, exp2}) Calls a routine at address exp1,
passing optional exp2 in registers
D and E

numerical expression between 0 and 65535

numerical expression between 0 and 65535

Examples:

 10 X = CALL(34579)
 100 PRINT CALL(18026, 59)

The CALL function invokes a machine language program that begins
at address exp1. If exp2 is given, it will be present as a two
byte binary value in the D and E registers of the 8080 when
control is transferred. A return address is placed on the 8080
stack, so that a RET or equivalent return instructions at the
end of the machine language program may return control to the
BASIC program that invoked it. The routine may place a value in
the H and L registers to become the value of the CALL function.
Since H and L consist of 16 bits, the value returned will
consist of a positive integer between 0 and 65535.

WAIT Statement

General form:

WAIT exp1, exp2, exp3 Wait until the the value in port
exp1 ANDed with exp2, is equal to
to exp3

numerical expressions, 0 to 255

numerical expression for port, 0 to 255

Example:

 WAIT 248, 128, 128

6-4 BASIC

When a WAIT statement is executed, program execution pauses
until a certain value is present in I/O port exp1. To determine
this value, exp2, exp3, and the value in port exp1 are converted
to one-byte binary values. Each bit in the selected port is
"ANDed" with the corresponding bit of exp2. If the result is
equal to exp3, program execution continues at the next state-
ment. If the result is not equal to exp3, the program continues
to wait for the specified value. Depressing the MODE SELECT key
will escape from at WAIT statement.

Exp2 and the logical AND operation provide a way to mask at the
selected port bits which are not of current interest. Assume
for example that you want a program to wait until bit 7 at port
F8 (hexadecimal) decomes a 1. (In a Sol, port F8 contains the
status of the serial communications channel, and if bit 7 is 1,
it means that the UART transmit buffer is empty. The program is
going to transmit a character out the serial communications
channel, but we need to wait until the UART is empty before
placing a new character in the port.*)

First look in Appendix 5 and find that the decimal value for F8
is 248, so the first part of the statement is WAIT 248,...
Next, create an eight bit binary mask, with only the bit of
interest, bit 7, set to 1: 10000000. Note that a 0 results when
a 0 in the mask is ANDed with either 0 or 1 from the selected
port. Thus the mask has zeros for all the "don't care" bits.
The decimal value for 10000000 binary is 128, so the WAIT
statement now consists of WAIT 248, 128,... The value from the
port is ANDed with the mask and compared for equivalence with
exp3. Since the mask 128 or 10000000 sets the last seven bits
of the incoming value from the port to zero, the last seven bits
of exp3 must also be zero to achieve a match. You are waiting
for bit 7 from the port to become 1. Since you "care" about
this bit, bit 7 of the mask is also one, and the result of the
AND operation is also one. Thus bit 7 of exp3 should be 1, and
the entire byte will be 10000000. Converted to decimal, this
value is 128. The complete statement is WAIT 248, 128, 128.

* WAIT cannot,be used to monitor the keyboard status port
of a Sol Terminal Computer.

7-1 BASIC

SECTION 7

7. MATRIX OPERATIONS

A matrix or matrix variable is a numeric variable which has been
dimensioned with the DIM statement for two dimensions. A branch
of mathematics deals with the manipulation of matrices according
to special rules. Extended BASIC contains an extension,
described in this section, which allows programs to be written
involving matrix calculations according to these special rules.
No attempt is made here to present the mathmatics of matrices; a
prior background is assumed.

Since a matrix has two dimensions, any element is located by two
positive integers. One of these integers may be thought of as
representing rows and the other columns in a table of values. A
three (row) by five (column) matrix arranged as a table and
containing real constants is shown below:

five columns

 3.1 4.6 7.0 3.1 0.0
three rows 3.1 9.9 0.0 7.2 0.0
 4.4 1.9 5.6 3.3 0.0

Before any calculations are made involving matrix variables, the
program must first declare the variables to be matrices in a
dimension statement. For example:

10 DIM A(10, 2), B9(A, B+C),...

Here, numeric variable A is given dimensions of 10 rows by 2
columns, and numeric variable B9 is given dimensions of A rows
by B+C columns. Any valid BASIC expression may be used as a
dimension. Simple variables and matrices of the same name may
co-exist in the same program. The matrix A, declared in they
example above, is independant of the variable A which has not
been dimensioned. Matrix B9 is therefore given a first
dimension equal to the value of numeric variable A, not the
number of elements in matrix A. In the statement:

100 DIM C(5, A(9,1))

matrix C is given 5 rows and a number of columns equal to the
value of matrix element A(9, 1). The memory space needed to
dimension a matrix is given by the following expression:

9 + ((first dimension) * (second dimension) * 6)

Since a matrix such as A may co-exist with a variable A in the
program, care must be taken to distinguish the two in program
statements. In general, A always refers to the variable, while
matrix A must have subscripts (A(I, J)).

7-2 BASIC

Matrix elements may be manipulated by all the methods given in
earlier sections of this manual. The program below, for example
adds corresponding elements of matrices X and Y into matrix Z.

10 DIM X(5, 5), Y(5, 5), Z(5, 5)
20 FOR I = 1 TO 5
30 FOR J = 1 TO 5
40 Z (I, J) = X(I, J) + Y(I, J)
50 NEXT J
60 NEXT I

In this respect a matrix can be treated like any multi-dimen-
sional array. This section presents a special group of state-
ments which can manipulate entire matrices in one statement, as
compared to the example program above which, while it has the
effect of adding two matrices, actually deals with individual
matrix elements, one at a time. These special statements all
begin with MAT (for matrix). MAT identifies the statement as
one dealing with matrices, so within such a statement it is not
necessary to include subscripts. For example, the statement

10 MAT Z = X + Y

accomplishes the same addition process as the program example
above, but in only one statement. Note the effect of the same
statement without the initial "MAT":

10 Z = X + Y

Here, the value of X + Y would be assigned to variable Z.

In the descriptions of matrix manipulations which follow, mvar
is used to refer to a matrix variable. Shape is used to refer
to correspondance in dimensions. The matrix defined by
DIM A(5, 2) has the same shape as the matrix defined by
DIM B9(5, 2), but the matrix defined by DIM C(3, 4) has a
different shape. A matrix defined by DIM D(2, 5) is said to
have dimensions opposite those of matrices A and B9.

7.1. MATRIX INITIALIZATION

The following three statements may be used to define or redefine
the contents of a matrix:

MAT mvar = ZER Sets every element in matrix mvar to
zero.

MAT mvar = CON Sets every element in matrix mvar to
one.

MAT mvar = IDN Sets the matrix to an identity matrix.
mvar must have equal dimensions for rows
and columns.

7-3 BASIC

7.2. MATRIX COPY

If two matrices have the same shape, the values in one may be
assigned to the corresponding elements of the other with a
statement of the form:

MAT mvar1 = mvar2

If the matrices in this statement have a different shape, the
values will be assigned only where there are corresponding
elements with the same subscript. For example:

10 DIM A(5, 5), B(10, 2)
20 MAT A = B

Here the values in the first five rows of B will be assigned to
the five rows of A, but only the first two columns of A will
receive new values since B has only two columns. The elements
in A which have no corresponding elements in B will retain their
original value.

7.3. SCALAR OPERATIONS

Each element of a matrix may be added, subtracted, multiplied or
divided the same expression and placed into a matrix of the same
shape, using a statement of the form shown below:

Scalar Operations

General Form:

MAT mvar1 = mvar2 op (expr)

any expression

arithmetic operator (+ - * /)

Examples:

 10 MAT A = B * (2.3356)
 20 MAT C = D / (2.35 * C(I, J) + SIN(X))
 30 MAT E = E + 1

mvar1 and mvar2 must have identical dimensions. The parentheses
around expr are required. If expr includes a matrix, as in the
second example, its subscripts must appear, as in any statements
not beginning with MAT. If mvar1 and mvar2 are the same matrix,
as in the third example, the resulting new elements will placed
in the old matrix.

7-4 BASIC

7.4. MATRIX ARITHMETIC OPERATIONS

A matrix may be added, subtracted, or multiplied (but not
divided) by another matrix, and the result placed in a third
matrix. A statement of the following general form is used:

MAT mvar3 = mvar1 op mvar2

arithmetic operator (+ - *)

Differing rules apply, depending on the arithmetic operator
used. In addition and subtraction, mvar1, mvar2, and mvar3 must
all have the same shape. In multiplication:

1. mvar3 must not be the same matrix as mvar1 or mvar2. No
check is made to insure this rule is adhered to. If it is
broken, unpredictable results will occur.

2. The first dimension (row) of mvar3 must be the same as the
first dimension of mvar1.

3. The second dimension (column) of mvar3 must be the same as
the second dimension of mvar1.

4. mvar1 and mvar2 must have opposite dimensions.

7.5. MATRIX FUNCTIONS

Two matrix functions may be used to place the inverse or
transpose of a matrix into another matrix.

Inverse and Transpose Functions

General Forms:

MAT mvar 1 = TRN (mvar 2) Places the transpose of mvar 2
into mvar1

MAT mvar1 = INV (mvar2) Places the inverse of mvar2
into mvar1

Examples:

 10 MAT A = TRN(B)
 20 MAT C = INV(D99)

mvar1 and mvar2 must not be the same matrix. In both functions,
mvar1 and mvar2 must have equal dimensions. No check is made to
insure that mvar1 is not the same matrix as mvar2. If they are
the same, unpredictable results will occur. As with all
functions, the argument must be within parentheses.

7-5 BASIC

7.6. REDIMENSIONING MATRICES

The total number of elements in a matrix is the product of its
two dimensions. In any MAT statement, a matrix may be given new
dimensions, as long as the number of elements is not increased.
The new dimensions are assigned merely by giving the new dim-
ensions in parentheses following the matrix variable name. For
example:

10 DIM A(20, 20)
20 MAT B = A(25, 5) + 1

Here matrix A is redimensioned from 20 by 20 to 25 by 5.

To understand how the elements of the orignal matrix are rea-
signed by the new dimensions, consider how the matrix initially
dimensionned DIM X(2, 3) is reorganized by including new
subscripts X(3, 2). Let us number the original elements:

1 2 3
4 5 6

Visualize these same elements in an equivalent linear array
(as they are actually stored in the computer's memory):

1 2 3 4 5 6

When the matrix is given new dimensions, elements are taken row
by row from this equivalent linear array. When the last element
of the first row is filled, the first element of the second row
is filled, and so forth. Here is the resulting arrangement:

1 2
3 4
5 6

If there are more elements in the original matrix than in the
new matrix, elements at the end of the equivalent linear array
are not assigned to the new matrix, but remain available if
another redimension should increase the size. A redimension may
only be done in a MAT statement, and may not be done in a second
DIM statement. The following attempted redimention will not
work:

DIM A(10, 10)
.
.
.

DIM A(5, 5)

A matrix variable may appear in a DIM statement only once. The
example above violates this rule.

APPENDIX 1 A1-1 BASIC

APPENDIX 1

Extended BASIC Command and Statement Summary and Index

(Minimum keyword abbreviations are underlined. An abbreviation
must be followed by a period. Functions and some commands and
statements do not have abbreviations. An S following a command
description means it may be also used as a statement; a C
following a statement means it may be used as a command.

COMMANDS

Command Description Page

APPEND file,T Reads a program stored on a cassette
-- file and appends it to the current

program. 3-16

BYE Leaves BASIC and returns to Solos. S
- 5-32

CLEAR Erases all variable definitions. S
--- 3-9

CONT Continues execution of a program
-- stopped with the MODE key or by

a STOP-statement. 3-8

DEL Deletes all statements. 3-4

DEL n Deletes statement n. 3-4

DEL n1, n2 Deletes statements n1 through n2. 3-4

DEL n1, Deletes statements n1 through the last
statement. 3-4

DEL ,n2 Deletes the first statement through
statement n2. Note space before comma. 3-4

EDIT n Allows the edit of statement n.
-- 3-6

GET file {,C}{,T} Reads a cassette file program, for
-- execution later. C (default) gets

a semi-compiled file; T gets a text
file. 3-14

LIST Lists the entire program.
-- 3-3

LIST n Lists statement n.
-- 3-3

LIST n1, n2 Lists statements n1 through n2.
-- 3-3

APPENDIX 1 A1-2 BASIC

LIST n1, Lists statements n1 through the last
-- statement. 3-3

LIST ,n2 Lists the first statement through
-- statement n2. 3-3

REN Renumbers the statements starting with
10 in increments of 10. 3-5

REN n Renumbers the statements starting with
n in increments of 10. 3-5

REN n,i Renumbers the statements starting with
n in increments of i. 3-5

RUN Clears all variable definitions and
-- executes the program beginning with

the first line. 3-7

RUN n Executes the program beginning with
-- statement n and does not clear

variable definitions. 3-7

SAVE file {,C}{,T} Saves the current program on a cassette
-- file of the name indicated. C saves

the program in semi-compiled format.
T saves the program in text format.
The default is C. 3-12

SCRATCH Deletes the entire program and clears
-- all variable definitions. S 3-4

SET DB=code Displays at the current cursor position
the character whose USASCII code is
supplied. S 5-32

SET DS=speed Sets the video display speed to the
value indicated. S 5-31

SET IP=port# Sets the Solos/Cuter pseudo input port
to the value indicated. S 5-32

SET LL=length Sets the line length for BASIC output
to the value specified. S 5-32

SET ML=size Sets the memory limit for BASIC to the
number of bytes specified. 5-32

SET OP=port# Sets the Solos/Cuter pseudo output port
to the value indicated. S 5-32

TUOFF Turns off both tape motor relays. S
-- 5-23

APPENDIX 1 A1-3 BASIC

TUON unit# Turns on the specified tape motor re-
- lay. S 5-23

XEQ file {,C}{,T} Reads and executes a cassette file pro-
- program. Use C (default) for semi-com-

compiled files, T for text files. 3-15

STATEMENTS

Statement Description

CLOSE #file numberl, #file number2, ...
- Closes the specified files so that they cannot

be accessed unless another FILE statement
requests access. 5-22

CURSOR {L}{,C} Moves the cursor to line L, position C on the
-- screen. If L or C is ommitted, its value from

the last CURSOR statement is used. C 5-33

DATA constantl, constant2, ...
- Specifies numerical or string constants that

can be read by the READ statement. 4-6

DEF FNvariable(variable1, variable2,...) = expression
-- Defines a one-line function that evaluates an

expression based on the values of the vari-
ables in parentheses. 5-7

DEF FNvariable(variable1, variable2,...)
-- . Defines a multi-line function that executes
 . statements following using the values of
RETURN expression the variables in parentheses in calculations
---. and, when a RETURN statement is encountered,
 . returns the value of the expression on the
FNEND same line. FNEND ends the function definition.
-- -- 5-7

DIM variable(dimensionl, dimension2, ...)
-- Defines a multi-dimensional numerical array

with the number of dimensions specified. C 5-17

DIM string variable (size)
-- Declares the number of characters that can be

contained in the specified string variable. C 5-11

END Terminates execution of the program.
- 4-9

ERRCLR Clears the error trap line number set by the
---- most recent ERRSET statement. C 5-30

ERRSET n When an error occurs, BASIC executes statement
-- n next. C 5-30

APPENDIX 1 A1-4 BASIC

EXIT n Escapes from and terminates all current FOR/
-- NEXT loops. Statement n is executed next. 4-14

FILE #file number; file name, access requested {,access granted}
-- Requests read(1), write(2), or read/write(3)

access to the specified cassette tape file.
The file name is given by a string expression,
so if it is named directly, it must be en-
closed in quotation marks.. 5-19

FNEND Ends a function definition.
-- 5-7

FOR variable = expressionl TO expression2 {STEP interval}
- . The value of expressionl is assigned to the
 . variable, then the statements between FOR and
 . NEXT are executed repeatedly until the vari-
NEXT {variable} able equals expression2. After each iteration
- the variable is incremented by 1, or by the

STEP interval if given. 4-12

GOSUB n Executes the subroutine beginning at statement
--- number n. Execution continues with the

statement following the GOSUB statement. 5-2

GOTO n Transfers control to statement number n.
- 4-10

IF expression THEN n
- -- Executes statement n if the value of the ex-

pression is true; otherwise, executes the next
statement in sequence. 4-20

IF expression THEN n1 ELSE n2
- -- --

Executes statement n1, if the value of the ex-
pression is true; otherwise, executes state-
ment n2. 4-20

IF expression THEN statement1:statement2:...
Executes statementl, statement2, etc. if the
value of the expression is true; otherwise,
executes the next statement in sequence. C 4-20

IF expression THEN statement1:statement2:...ELSE statement3:...
-- -- --

Executes the statements following THEN if the
value of the expression is true; otherwise,
executes the statements following ELSE. C 4-20

APPENDIX 1 A1-5 BASIC

IF expression THEN n ELSE statement1:statement2:...
- -- --

Executes statement n if the value of the ex-
pression is true; otherwise, executes the
statement:, following ELSE. 4-20

IF expression THEN statement1:statement2:...ELSE n
- -- --

Executes the statements following THEN if the
value of the expression is true; otherwise,
executes statement n. 4-20

INPUT variable1, variable2, ...
-- Accepts values from the terminal and assigns

them to variable1, variable2, etc. C 4-3

INPUT "message", variable1, variable2, ...
-- Displays the message as a prompt and then

accepts values from the terminal, assigning
them to variable1, variable2, etc. C 4-3

INPUT (characters, time) variable1, variable2, ...
-- Accepts values from the terminal and assigns

them to variable1, variable2, etc. The user
can only type the number of characters indica-
ted and has time (in tenths of a second) to
respond. 5-29

INPUT (characters, time) "message", variable1, variable2,...
-- Displays the message as a prompt and then ac-

cepts values from the terminal, assigning them
to variable1, variable2, etc. The user can
only type the number of characters indicated
in parentheses and has time (in tenths of a
second) to respond. 5-29

{LET} variable1, = expressionl {, variable2 = expression2}...
- Assigns the value of each expression to the

corresponding variable. The word LET may be
absent. C 4-2

MAT mvar = ZER Sets every element in matrix mvar to zero. C
- 7-2

MAT mvar = CON Sets every element in matrix mvar to one. C
- 7-2

MAT mvar = IDN Sets the matrix to an identity matrix. C
- 7-2

MAT mvar1 = mvar2 Copies matrix variable 1 into matrix
- variable 2. C 7-3

MAT mvar1 = mvar2 op (expr)
- Performs the same scalar operation on each

element of matrix variable 2. op is
+ - * or / C 7-3

APPENDIX 1 A1-6 BASIC

MAT mvar3 = mvar1 op mvar2
- Adds, subtracts, or multiplies matrix variable

1 by matrix variable 2. op is + - or * C 7-4

MAT mvar1 = TRN (mvar2)
- Places the transpose of matrix variable 2

into matrix variable 1. C 7-4

MAT mvar1 = INV (mvar2)
- Places the inverse of matrix variable 2 into

matrix variable 1. C 7-4

mvar (expressionl, expression2)
Matrix mvar may be redimensionned by including
the new dimensions expressionl and expression2
after the matrix variable name. 7-5

NEXT {variable} Ends a FOR loop.
- 4-12

ON expression ERRSET n1, n2, ...
- -- If the value of the expression is 1, sets n1

as the statement to be executed when an error
occurs; if the value is 2, sets n2 as the
statement to be executed when an error occurs;
etc. 5-30

ON expression EXIT n1, n2, ...
- -- If the value of the expression is 1, transfers

control to statement n1 and terminates all ac-
tive FOR loops; if 2, transfers to statement
n2; etc. 4-14

ON expression GOSUB n1, n2, ...
- --- If the value of the expression is 1, executes

the subroutine starting at statement n1; if
the value is 2, executes the subroutine start-
ing at statement n2; etc. 5-4

ON expression GO TO n1, n2, ...
- - If the value of the expression is 1, executes

statement n1 next; if it is 2, executes state-
ment n2 next; etc. 4-11

ON expression RESTORE n1, n2, ...
- --- If the value of the expression is 1, resets

the pointer in the DATA statements so that the
next value read is the first data item in line
n1; if it is 2, resets the pointer to n2 etc. 4-8

OUT port, value Places the specified value in the indicated
-- I/O port. C 6-2

PAUSE nexpr Delays further execution for nexpr tenths
-- of a second. 4-10

APPENDIX 1 A1-7 BASIC

POKE value, location
-- Places the specified value in the specified

memory location. C 6-2

PRINT ele, ele, ele{,}...
- Displays numerical or string expression ele-

ments, according to format elements. Commas or
semicolons may seperate elements or terminate
the PRINT statement. 5-24

PRINT #file number; expressionl, expression2, ...
- Sequentially prints the values of expression1,

expression2, etc. on the specified cassette
tape file. C 5-20

READ variable1, variable2, ...
- Reads values from DATA statements and assigns

then to variable1, variable2, etc. 4-6

READ #file number;variable1,variable2,...{:statement1:
- statement2: ... }

Reads values from the specified file and
assigns them to variable1, variable2, etc.
If an end of file is read, statementl, state-
ment2, etc. will be executed (if present). 5-21

REM any series of characters
The characters appear in the program as
remarks. The statement has no effect on
execution. 4-1

RESTORE {n} Resets the pointer in the DATA statements
--- to the beginning. If n is present, the

pointer is set to the first data item in
statement n. 4-7

RETURN Returns from a subroutine.
--- 5-3

RETURN exp Returns from a function. The value returned is
--- exp. 5-7

REWIND #file numberl, #file number2, ...
--- Rewinds the specified files 5-22

SEARCH string expressionl, string expression2, variable
-- Searches the second string for the first

occurance of the first string specified. The
variable is set equal to the character posi-
tion at which the first string was found.
If it is not found, the variable is set equal
to zero. 5-12

APPENDIX 1 A1-8 BASIC

STOP Terminates execution of the program and prints
- "STOP IN LINE n" where n is the line number of

the STOP statement. 4-9

WAIT exp1, exp2, exp3
- The next statement is not executed until the

value in port exp1, ANDed with exp2, is equal
to exp3. 6-3

XEQ file {,T}{,C} Reads the program from the specified cassette
- tape file and begins execution. The file name

is a string expression so it must be enclosed
in quotation marks if given directly. C reads
semi-compiled files. T reads text files. 3-14

APPENDIX 2 A2-1 BASIC

APPENDIX 2

EXTENDED BASIC FUNCTION SUMMARY AND INDEX

In the function forms below, which are arranged alphabetically,
n represents a numeric expression and s represents a string ex-
pression. Function names may not be abbreviated.

Function Value Returned Page

ABS(n) The absolute value of the numerical expression n. 5-6

ASC(s) The USASCII code for the string expression s. Only
the first character of the string is interpreted. 5-14

ATN(n) The arctangent of the numerical expression n in
radians. 5-6

CALL(address{,parameter})
The value in HL. CALL places a return address on the
8080 stack, calls the routine at the specified memory
address, and optionally passes the value of a
parameter in the DE register. The routine may return
a value in HL, which becomes the value of the CALL
function. 6-3

CHR(n) The character whose USASCII code is the value of
numerical expression n. 5-14

COS(n) The cosine of n in radians. 5-6

EOF (file number)
The status of the specified file.

0 file number not declared
1 the last operation was FILE
2 the last operation was READ
3 the last operation was PRINT
4 the last operation was REWIND
5 not used
6 the last operation was READ end of file 5-23

ERR(0) A string containing the last error message. 5-16

EXP(n) The constant a raised to the power n. 5-5

FNvariable(variable1, variable2, ...)
The value of user-defined function FNvariable.
variable1, variable2, etc. are arguments. 5-8

FREE(0) The number of bytes of space left available in BASIC
for program and variables. 5-18

APPENDIX 2 A2-2 BASIC

INP(exp) Supplies the numerical value contained in I/O port
exp. Exp is between 0 and 255. 6-2

INT(n) The largest integer less than or equal to the value
of n. 5-5

LEN(name) The number of character in the string variable whose
name is specified. 5-14

LOG(n) The natural logarithm of n. 5-5

LOG10(n) The logarithm base 10 of n. 5-5

PEEK(n) The value contained in memory location n. 6-2

POS(0) The current position of the cursor (0 - 131). 5-33

RND(n) The nth entry in a table of random numbers. 5-5

SGN(n) The sign of the value of n; 1 if positive, -1 if
negative, 0 if n is zero. 5-5

SIN(n) The sine of n in radians. 5-6

SQR(n) The square root of n. 5-5

STR(n) The character representation of the value of n. 5-15

TAN(n) The tangent of n in radians. 5-6

TYP(0) A value representing the type of data that will be
read from the DATA statement corresponding to the
next READ statement: 1 for numeric data, 2 for string
data, or 3 for data exhausted. 4-7

VAL(s) The numerical value of the string s. The value of
s must be convertable to a legal numerical constant. 5-15

string variable (n1{,n2})
Characters n1, through n2 of the specified string if
n2 is present. Characters n1, through the end of the
string if n2 is ommitted. 5-13

numerical variable (n1{, n2, ...})
An element of an array with the specified name. The
element's position is given by n1, n2, etc. 5-16

APPENDIX 3 A3-1 BASIC

APPENDIX 3

ERROR MESSAGES

All errors are fatal and stop the execution of the program or
command causing the error, unless an ERRSET statement is in
effect. If the error occurs while writing data on a file or
saving a program, some information may be lost.

Message Meaning What to Do

--
SYNTAX ERRORS

--
BS Bad syntax. The statement

or command last executed
was constructed incorrectly.

Check the syntax of the
command or statement in
Appendix A.

FD Format definition error or
file declaration error. The
last PRINT statement con-
tained a bad format defini-
tion, the last statement
referring to a file number
specified an undeclared
file, or the last FILE
statement could not declare
the file as requested.

Either check the format
definition against the do-
cumentation under "For-
matted PRINT Statement" or
find the most recent FILE
statement and verify its
syntax and the file number
declared.

LL Line too long. The next
line to be listed is too
long for BASIC. It cannot
be edited or saved in the
text mode.

If you don't know the num-
ber of the next line to be
listed, renumber the pro-
gram and give the LIST
command again. Replace
the long line with shorter
lines. You cannot list
the long line, so you must
reconstruct its meaning
from the context of the
surrounding statements.

APPENDIX 3 A3-2 BASIC

--
SPECIFIC ERROR CONDITIONS

--
AM Argument error. A function

has been called with the
wrong number or type of
arguments.

Review the function's de-
finition in Appendix A or
in your proqram if it is a
user-defined function.

DD Double definition. An at-
tempt has been made to define
a function with a name that
is already defined.

Rename the function.

DI Direct execution error. The
statement last typed cannot
be executed in calculator
mode.

Give the statement a line
number and execute it as
all or part of a program.

DM Dimension error. A dimen-
sion statement contains a
variable name that is al-
ready dimensioned or cannot
be dimensioned.

Rename the dimensioned
variable. Make sure the
variable name is valid.

IS Internal stack error.
A expression was too complex
to evaluate.

Divide the expression into
parts, using assignment
statments.

LN Line number reference error.
A statement referred to a
line that does not exist.

List the area of the pro-
gram around the line
referred to. Find the
correct line number and
revise the reference.

NP No program. BASIC was in-
structed to act on the
current program and none
exists.

Type the program or read
it from tape.

TY Type error. The variable or
function name appearing in
the last statement is the
wrong type. The types are
string variable, simple
variable, dimensioned
variable, and function.

Check the names of func-
tions and dimensioned
variables. Make sure the
operation is appropriate
for the type of data in-
dicated.

APPENDIX 3 A3-3 BASIC

--
COMPLEXITY AND LIMIT ERRORS

--
CS Control stack error.

Possible causes are:
-RETURN without a prior
 GOSUB
-Incorrect FOR/NEXT nesting
-Too many nested GOSUBs
-Too many nested FOR loops
-Too many nested function
 calls

List the statements sur-
rounding the error-causing
statement and check the
logical flow. Execute
just a few statements at a
time and list variable
values to find out where
things go wrong.

DZ Divide by zero error. An
expression in the last
statement attempted to
divide by zero.

Set the value of the
divisor to a nonzero num-
ber before dividing.

FM Format error. A field de-
finition in the last for-
matted PRINT statement is
not large enough or it is
too large.

Use the PRINT statement in
calculator mode to deter-
mine the size of the value
to be printed. Adjust the
field declaration
accordingly.

FO Field overflow. An attempt
has been made to print a
number larger than Extended
BASIC's numerical field size.

Display values used to
compute the number. Trace
the source of the overflow
in reverse order through
the program.

OB Out of bounds. The argument
or parameter given is not
within the range of the
function or command last
executed.

Display the values of the
arguments or parameters
used. If they seem
reasonable, look up the
definition of the function
or the command.

SO Storage overflow. There is
insufficient storage to
complete the last operation.

Use the FREE command to
find out how much storage
is left. Use SET ML to
change the memory limit
for BASIC.

APPENDIX 3 A3-4 BASIC

--
CASSETTE ERRORS

--
AC Access error. An attempt

has been made to access a
file in the wrong mode
(read, write, or read/write).

Check the FILE statement
requesting access. Change
the access mode if it is
incorrect.

CA Cannot append. The file in-
dicated in the last APPEND
command is the wrong type.
It must be a text format
file.

SAVE the file in text
format.

CL* Close error. The file re-
ferred to most recently is
not open or cannot be closed.

Display the file number to
make sure you're working
with the right file. De-
clare the file in a FILE
statement before referring
to its number.

OP* Open error. The file re-
ferred to most recently is
open or cannot be opened.

List the FILE statement
and display the value of
the file number. Try to
find a FILE statement that
declares the same file
number. Close the file.

RD* Read error. Either (1)
there is an error on a
tape being read or (2) a
READ statement tried to
read past the last DATA
statement.

(1) Try to read the tape
again. (2) Make sure you
have the right number of
items in DATA statements.
Check RESTORE statements.

WT* Write error. There has
been an error in writing
cassette tape.

Interrupt the operation
by striking the MODE key
and start over at another
location on the tape.

* This error cnodition might not be dependent on Extended BASIC.
It may be necessary to clear the error condition by pressing
the UPPER CASE and REPEAT keys simultaneously, and then giving
the command:

EX{ECUTE} 0 <CR>

APPENDIX 3 A3-5 BASIC

--
MATRIX ERRORS **

--
MD Matrix Dimension Error.

Dimensions are incom-
patible with the op-
eration attempted.

Redimension the matrix
or restruction the oper-
ation.

MS Matrix Singular Error.
The operation attemp-
ted cannot be per-
formed on a singular
matrix.

Use other operations.

--

** No check is ever made to determine if the user has broken the
rule that restricts an mvar from appearing on both sides of the
assignment operator in MAT statements. If this rule is broken,
unpredictable results will occur.

APPENDIX 4 A4-1 BASIC

APPENDIX 4

TABLE OF ASCII CODES
(Zero Parity)

Paper tape Upper Octal Hex Character
 octal Decimal
 123 4567P
| . | 0000 000 0 00 ctrl @ NUL
|* . | 0004 001 1 01 ctrl A SOH Start Of Heading
| * . | 0010 002 2 02 ctrl B STX Start Of Text
|** . | 0014 003 3 03 ctrl C ETX End Of Text
| *. | 0020 004 4 04 ctrl D EOT End Of Xmit
|* *. | 0024 005 5 05 ctrl E ENQ Enquiry
| **. | 0030 006 6 06 ctrl F ACK Acknowledge
|***. | 0034 007 7 07 ctrl G BEL Audible Signal
| .* | 0040 010 8 08 ctrl H BS Back Space
|* .* | 0044 011 9 09 ctrl I HT Horizontal Tab
| * .* | 0050 012 10 0A ctrl J LF Line Feed
|** .* | 0054 013 11 0B ctrl K VT Vertical Tab
| *.* | 0060 014 12 0C ctrl L FF Form Feed
|* *.* | 0064 015 13 0D ctrl M CR Carriage Return
| **.* | 0070 016 14 0E ctrl N SO Shift Out
|***.* | 0074 017 15 0F ctrl O SI Shift In
| . * | 0100 020 16 10 ctrl P DLE Data Line Escape
|* . * | 0104 021 17 11 ctrl Q DC1 X On
| * . * | 0110 022 18 12 ctrl R DC2 Aux On
|** . * | 0114 023 19 13 ctrl S DC3 X Off
| *. * | 0120 024 20 14 ctrl T DC4 Aux Off
|* *. * | 0124 025 21 15 ctrl U NAK Negative Acknowledge
| **. * | 0130 026 22 16 ctrl V SYN Synchronous File
|***. * | 0134 027 23 17 ctrl W ETB End Of Xmit Block
| .** | 0140 030 24 18 ctrl X CAN Cancel
|* .** | 0144 031 25 19 ctrl Y EM End Of Medium
| * .** | 0150 032 26 1A ctrl Z SUB Substitute
|** .** | 0154 033 27 1B ctrl [ESC Escape
| *.** | 0160 034 28 1C ctrl \ FS File Separator
|* *.** | 0164 035 29 1D ctrl] GS Group Separator
| **.** | 0170 036 30 1E ctrl ^ RS Record Separator
|***.** | 0174 037 31 1F ctrl _ US Unit Separator
| . * | 0200 040 32 20 Space
|* . * | 0204 041 33 21 !
| * . * | 0210 042 34 22 "
|** . * | 0214 043 35 23 #
| *. * | 0220 044 36 24 $
|* *. * | 0224 045 37 25 %
| **. * | 0230 046 38 26 &
|***. * | 0234 047 39 27 '
| .* * | 0240 050 40 28 (
|* .* * | 0244 051 41 29)
| * .* * | 0250 052 42 2A *
|** .* * | 0254 053 43 2B +
| *.* * | 0260 054 44 2C ,
|* *.* * | 0264 055 45 2D -
| **.* * | 0270 056 46 2E .
|***.* * | 0274 057 47 2F /
| . ** | 0300 060 48 30 0

APPENDIX 4 A4-2 BASIC

TABLE OF ASCII CODES (Continued)
(Zero Parity)

|* . ** | 0304 061 49 31 1
| * . ** | 0310 062 50 32 2
|** . ** | 0314 063 51 33 3
| *. ** | 0320 064 52 34 4
|* *. ** | 0324 065 53 35 5
| **. ** | 0330 066 54 36 6
|***. ** | 0334 067 55 37 7
| .*** | 0340 070 56 38 8
|* .*** | 0344 071 57 39 9
| * .*** | 0350 072 58 3A :
|** .*** | 0354 073 59 3B ;
| *.*** | 0360 074 60 3C <
|* *.*** | 0364 075 61 3D =
| **.*** | 0370 076 62 3E >
|***.*** | 0374 077 63 3F ?
| . * | 0400 000 64 40 @
|* . * | 0404 001 65 41 A
| * . * | 0410 002 66 42 B
|** . * | 0414 003 67 43 C
| *. * | 0420 004 68 44 D
|* *. * | 0424 005 69 45 E
| **. * | 0430 006 70 46 F
|***. * | 0434 007 71 47 G
| .* * | 0440 010 72 48 H
|* .* * | 0444 011 73 49 I
| * .* * | 0450 012 74 4A J
|** .* * | 0454 013 75 4B K
| *.* * | 0460 014 76 4C L
|* *.* * | 0464 015 77 4D M
| **.* * | 0470 016 78 4E N
|***.* * | 0474 017 79 4F O
| . * * | 0500 020 80 50 P
|* . * * | 0504 021 81 51 Q
| * . * * | 0510 022 82 52 R
|** . * * | 0514 023 83 53 S
| *. * * | 0520 024 84 54 T
|* *. * * | 0524 025 85 55 U
| **. * * | 0530 026 86 56 V
|***. * * | 0534 027 87 57 W
| .** * | 0540 030 88 58 X
|* .** * | 0544 031 89 59 Y
| * .** * | 0550 032 90 5A Z
|** .** * | 0554 033 91 5B [shift K
| *.** * | 0560 034 92 5C \ shift L
|* *.** * | 0564 035 93 5D] shift M
| **.** * | 0570 036 94 5E ^ shift N
|***.** * | 0574 037 95 5F _ shift O
| . ** | 0600 040 96 60 `

APPENDIX 4 A4-3 BASIC

TABLE OF ASCII CODES (Continued)
(Zero Parity)

|* . ** | 0604 041 97 61 a
| * . ** | 0610 042 98 62 b
|** . ** | 0614 043 99 63 c
| *. ** | 0620 044 100 64 d
|* *. ** | 0624 045 101 65 e
| **. ** | 0630 046 102 66 f
|***. ** | 0634 047 103 67 g
| .* ** | 0640 050 104 68 h
|* .* ** | 0644 051 105 69 i
| * .* ** | 0650 052 106 6A j
|** .* ** | 0654 053 107 6B k
| *.* ** | 0660 054 108 6C l
|* *.* ** | 0664 055 109 6D m
| **.* ** | 0670 056 110 6E n
|***.* ** | 0674 057 111 6F o
| . *** | 0700 060 112 70 p
|* . *** | 0704 061 113 71 q
| * . *** | 0710 062 114 72 r
|** . *** | 0714 063 115 73 s
| *. *** | 0720 064 116 74 t
|* *. *** | 0724 065 117 75 u
| **. *** | 0730 066 118 76 v
|***. *** | 0734 067 119 77 w
| .**** | 0740 070 120 78 x
|* .**** | 0744 071 121 79 y
| * .**** | 0750 072 122 7A z
|** .**** | 0754 073 123 7B {
| *.**** | 0760 074 124 7C |
|* *.**** | 0764 075 125 7D } Alt Mode
| **.**** | 0770 076 126 7E ~ Prefix
|***.**** | 0774 077 127 7F DEL Rubout

Permission to reproduce Appendix 4 was granted by the
Regents of the University of California and the Lawrence
Hall of Science.

APPENDIX 5 A5- BASIC1

APPENDIX 5

HEXADECIMAL-DECIMAL INTEGER
CONVERSION TABLE

The table appearing on the following pages provides a means for direct conversion of decimal integers in the range
of 0 to 4095 and for hexadecimal integers in the range of 0 to FFF.

To convert numbers above those ranges, add table values to the figures below:

Hexadecimal Decimal Hexadecimal Decimal

01 000 4 096 20 000 131 072
02 000 8 192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288
08 000 32 768 90 000 589 824
09 000 36 864 A0 000 655 360
0A 000 40 960 B0 000 720 896
0B 000 45 056 C0 000 786 432
0C 000 49 152 D0 000 851 968
0D 000 53 248 E0 000 917 504
0E 000 57 344 F0 000 983 040
0F 000 61 440 100 000 1 048 576
10 000 65 536 200 000 2 097 152
11 000 69 632 300 000 3 145 728
12 000 73 728 400 000 4 194 304
13 000 77 824 500 000 5 242 880
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90 112 800 000 8 388 608
17 000 94 208 900 000 9 437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 B00 000 11 534 336
1A 000 106 496 C00 000 12 582 912
1B 000 110 592 D00 000 13 631 488
1C 000 114 688 E00 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 33 554 432

APPENDIX 5 A5- BASIC2

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A0 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0B0 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

0C0 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0D0 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0E0 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
0F0 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B0 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C0 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

APPENDIX 5 A5- BASIC3

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C0 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B0 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

APPENDIX 5 A5- BASIC4

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C0 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E0 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

APPENDIX 5 A5- BASIC5

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA0 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB0 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC0 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD0 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE0 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF0 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

B00 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA0 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB0 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC0 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD0 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE0 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF0 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

APPENDIX 5 A5- BASIC6

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF0 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

D00 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC0 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE0 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF0 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

E00 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA0 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB0 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

APPENDIX 5 A5- BASIC7

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

EC0 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED0 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE0 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF0 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

F00 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD0 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF0 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

APPENDIX 6 A6-1 BASIC

APPENDIX 6

BIBLIOGRAPHY

1. An Introduction to Microcomputers, Volume 0, The Beginner's Book
Adam Osborne and Associates, Inc. 1977

2. BASIC Programming in Real Time
Don Cassel, 1942
Reston Publishing Company, Inc. 1975

3. Simplified BASIC Programming
Gerald A. Silver
McGraw-Hill Co. 1974

4. Basic BASIC
James S. Coan
Hayden 1970

5. Advanced BASIC
James S. Coan
Hayden 1977

6. Problems for Computer Solution
Fred Gruenberger and George Jaffray
Wiley 1965

7. BASIC
Samuel L. Marateck
Academic Press 1975

8. Some Common BASIC Programs
Lon Poole and Mary Borchers
Adam Osborne & Associates, Inc. 1977

9. Game Playing with BASIC
Donald D. Spencer
Hayden Book Company, Inc. 1977

10. Game Playing with Computers
Donald D. Spencer
Hayden 1975

11. 101 BASIC Computer Games
Digital Equipment Corporation 1975

Processor Technology
Processor Technology 7100 Johnson Industrial Drive (415) 829-2600
Corporation Pleasanton, CA 94566 Cable Address - PROCTEC

Extended Cassette BASIC Update 731064

Subject: Errata and Addenda to Users Manual, First Printing
Fixing a bug in FOR/NEXT loop operation

This update contains a series of items of new or corrected text.
Each item begins with the page number where the new text goes,
and contains some surrounding text to help in locating its posi-
tion. To have access to this new information when you need it,
either mark the corrrections on the text pages where they apply,
or make notes like "See Update 731064".

--
1. BOTTOM OF PAGE 2-2, TOP OF 2-3

Again type Y or N to remove or not remove an additional part of
BASIC which performs trigonometric functions and certain other
extended functions. The following functions cannot be used if Y
is typed: SIN, COS, TAN, EXP, SQR, ATN, LOG, LOG10. After Y or
N is typed, the READY message will appear.

As long as BASIC is in memory, the command

EX{ECUTE} 0 <CR>

will re-enter it.

After BASIC displays the READY message, you can enter programs
and issue commands.

To leave BASIC and return to the SOLOS or CUTER monitor program,
simply type BYE <CR>.

BASIC and its current program, if any, are not lost and you can
reenter by typing the EX{ECUTE} 0 command.

When BASIC is executed for the first time, the BASIC code which
was just loaded into memory is tested using checksums. If the
code is not correct, the message CHECKSUM FAILED is displayed
followed by two hexadecimal numbers: the correct checksum and
the incorrect checksum. If you type a carriage return, you will
enter BASIC, and BASIC may appear to operate properly. It is
best, however, to try reading the tape again, after returning to
SOLOS/CUTER by typing the UPPER CASE and REPEAT keys together.
BASIC is recorded twice in succession on the cassette. If you
get the same checksum error message after trying to read the
first recording of BASIC, try reading the second recording.
Repeated checksum errors can be caused by wrong settings of
cassette recorder controls, dirty tape heads, poor adjustment of
the cassette interface, bad memory locations, or other hardware
problems.

2. MIDDLE OF PAGE 3-2

MODE Aborts a running program, infinite loop, list
SELECT ing, and getting or saving operations. Deletes a

line being typed. If used to stop a running
program, all open files will be closed.

--
3. TOP OF PAGE 3-7

BASIC: 10 PRINT "ENTER Q, Y, AND Z"
User: (Positions the cursor over Q and type X <CR>).
--
4. BOTTOM OF PAGE 3-8

If you edit any part of a program after interrupting execution,
all variable definitions are lost. Thus you cannot stop a
program's execution, change a statement in that program, and
then CONTinue execution or print variable names. When a program
run is terminated for any reason, all open files are closed,
which also could interfere with subsequent CONTinuation.
--
5. TOP OF PAGE 4-5

TAB(exp) Causes the cursor to move horizontally to the
character position given by the value of exp
(any numerical expression.) This function may
only be used in a PRINT statement.

"&c" Prints the control character c. Printing some
control characters performs a function on the
terminal. For example:
 Control M - Carriage return
 Control J - Line feed
 Control K - Home cursor and clear screen
 Control N - Home cursor
Section VII of the SOL notebook has a complete
list of control characters and the special symbols
or control functions generated by printing control
characters.

"&&" Print a single ampersand (&).
--
6. TOP OF PAGE 5-8

In the above example, the variable names listed in parentheses
after FNL in line 100 are called formal parameters. In
userdefined functions, all formal parameters are locally defined
within the function; if any statement in the function modifies
the value of a variable which is also a formal parameter, the
value of that variable outside the function will NOT be changed.
This is true for numerical variables only, not strings, arrays,
or matrices. For example:

 1 Q = 40 | 30 RETURN Z
10 DEF FNA1(X,Y,Z) | 40 FNEND
20 X=X+1,Q=X+Y,Z=Q/3 | 50 X=1, Y=2, Z=3
25 S = 4 | 60 PRINT FNA1(X,Y,Z), X, Y, Z, Q, S

 RUN
 1 1 2 3 3 4
 READY

Note that the values of X, Y, and Z, outside the function were
not changed by line 20 which is inside the function. Note also
that Q, which was not a formal parameter, WAS changed by line
20. Variable S, introduced within the function, retains its
value outside the function.

--
7. BOTTOM OF PAGE 5-19

The filename ("name") used in this command must be the same as
the name used when the file was created. The FILE statement may
be used to create a file for subsequent PRINT statements, in
which case the file name is assigned by the FILE statement and
written on the file when the first PRINT statement is executed.

The file name consists of 1 to 5 characters and an optional unit
number. The form is: name/unit, where unit is 1 or 2.
For example:

DATA1/2 refers to a file named DATA1 in unit 2,
STUFF refers to a file named STUFF on unit 1, the

default unit.

--
8. PAGES 5-29 AND 5-30

Controlled INPUT Statement

General forms:

INPUT, (#chars,t) var1, var2, ... Enters values from the
terminal and assigns

numerical them to var1, var2,
expression etc.; however, only

variables #chars characters can
typed by the user and
the user has t tenths
of a second to
respond.

INPUT (#chars,t) " message", var1, var2, ...
Same as above, but a

string message is printed as
constant a prompt before values
including are accepted from the
its quotes terminal, and before

timing begins.
Examples:

 10 INPUT (3,10) X
 100 INPUT (20, 0) N$, A$
 200 INPUT (0 ,100) A, B, C
 300 INPUT (10,300) "WHAT IS THE DATE?" ,D$

The controlled INPUT statement lets you specify how many charac-
ters can be entered and how much time is allowed to respond.
As soon as #chars characters have been typed, BASIC generates
a carriage return and accepts no more characters. If the user

takes more than t tenths of a second to respond, BASIC assumes a
carriage return was typed.

If the value of #chars is 0, as many as 131 characters can be
entered. If the value of t is 0, the user has an infinite
amount of time to respond. For example:

 5 DIM A$(3)
10 FOR X = 1 TO 9
20 FOR Y = 1 TO 9
30 PRINT X ; " * ";Y;" = "
40 INPUT (3, 100) A$
42 IF A$ = "" THEN PRINT "YOU ARE SURE SLOW!": GO TO 30
45 A = VAL(A$)
50 IF A <> X*Y THEN PRINT "TRY AGAIN" : GO TO 30
60 NEXT Y
70 NEXT X

When executed, this program accepts a three-character answer
from the user and waits 10 seconds for a response. If the user
does not respond within 10 seconds the message YOU ARE SURE SLOW
is printed. If the user types the wrong response, the message
TRY AGAIN is printed.

5.8. ERROR CONTROL

BASIC detects many kinds of errors. Normally, if an error
occurs, BASIC will print one of the error messages listed in
Appendix 3. However, using the error-control statements des-
cribed below, you can tell BASIC to execute another statement
in the program instead. The ERR(0) function gives a string
containing the last error message, which can be used in error
control programming.

ERRSET and ERRCLR Statements

General forms:

ERRSET n Determines that statement n will be
executed if any error is detected by

statement BASIC.
number

ERRCLR Cancels the last ERRSET statement.

Examples:

 10 ERRSET 75
 100 ERRCLR

The ERRSET n statement lets you determine that statement n will
be executed when any error occurs. If an error does occur and
the ERRSET n statement does cause a transfer to statement n,
before statement n is executed the ERRSET statement itself is

cancelled (as if an ERRCLR statement were executed.) Also, the
transfer to statement n clears all current FOR/NEXT loops,
GOSUBs, and user-defined function calls (as if a CLEAR statement
were executed.)

The ERRCLR statement cancels the most recent ERRSET statement.
If a statement executed after an ERRCLR statement produces an
error, BASIC will print a standard error message (See Appendix
3,) rather than going to statement n. However, if the ERRSET
statement is executed again, it will again set the error trap
statement n, as if the ERRSET were encountered for the first
time.

9. MIDDLE OF PAGE 7-4

3. The second dimension (columns) of mvar3 must be the same as
the second dimension of mvar2.

4. The second dimension (columns) of mvar1 must equal the first
dimension (rows) of mvar2.

7.5. MATRIX FUNCTIONS

Two matrix functions may be used to place the inverse or
transpose of a matrix into another matrix.

Inverse and Transpose Functions

General Forms:

MAT mvar1 = TRN (mvar2) Places the transpose of mvar2
into mvar1. mvarl and mvar2
must have opposite dimensions.

MAT mvar1 = INV (mvar2) Places the inverse of mvar2
into mvar1. Both matrices
must be square. Examples:

Examples:

 10 MAT A = TRN(B)
 20 MAT C = INV(D9)

mvarl and mvar2 must not be the same matrix. No check is made
to insure that mvarl is not the same matrix as mvar2. If they
are the same, unpredictable results will occur. As with all
functions, the argument must be within parentheses.

10. TOP OF PAGE A1-7 ALSO ON SUMMARY CARD

POKE location, value
-- Places the specified value in the specified

memory location. C

11. TOP OF PAGE A2-2

INT(n) Truncates n to its integer part.
--
12. MIDDLE OF PAGE A2-2

TAB(n) Moves the cursor or print head horizontally to
character position n. Use only in a PRINT statement.

--
13. BOTTOM OF PAGE A2-2

string variable (exp1{,exp2})
 Characters exp1 through exp2 of the specified string
if exp2 is present. Characters exp1 through the end
of the string if exp2 is ommitted.

--
14. BOTTOM OF PAGE A3-1

IN Input error. The last Provide a string which
VAL function attempted contains a number.
to determine the value Study the program logic.
of a string which did
not contain a number.

--
15. MIDDLE OF PAGE A3-2

NC Not CONTinuable. The Make sure a BASIC program
current program, if any, is ready to run. You can
cannot be CONTinued. not CONTinue after editing

a program, using the CLEAR
command, etc.

16. MIDDLE OF PAGE A3-3

FP Floating Point error. C No solution.
cannot handle numbers
greater than 10 to the 126th
power, or less than 10 to the
-126th power.

NI Not implemented. An attempt See Section 2.1.
was made to use matrix or
trig functions which were
deleted. _

17. TOP OF PAGE A3-5

MS Matrix Singular Error. The operation cannot be
The operation attemp- performed on the data in
ted cannot be per- the given matrix.
formed on a singular
matrix.

UD Undimensionned matrix. DIMension the matrix in
A variable name was used an earlier DIM statement.
which was not previously
defined in a DIM statement.

Fixing a bug in FOR/NEXT loop operation

A bug can occur in FOR/NEXT loops, if a loop is constructed so
that it will not allow execution of a nested inner loop. To fix
this bug, you can read BASIC into memory, make a simple patch,
and re-record the patched version, using this procedure:

1) Place the BASIC cassette in unit 1 and type GET BASIC <CR>.
2) Still in SOLOS/CUTER, type EN B50 <CR>.
3) Type the following, noting the spaces separating entries:

:C1 CA 40 0B/ <CR>.
EN 3F81 <CR>
:FE 9D/ <CR>

4) To save the patched BASIC now in memory, you can re-record on
the same cassette, after taping over the two holes on the back
of the cassette to allow re-recording, and recording 15 seconds
of empty tape. Still in SOLOS/CUTER, type:

SET TYPE 42 <CR>
SET XEQ 0 <CR>
SAVE BASIC 0 3F84 <CR>
SAVE END FFFF 0001 <CR>

The first of your two recorded BASICs is now fixed. The follow-
ing program should now RUN with no CS ERROR:

10 FOR I=1 TO 0
20 FOR K=1 TO 0
30 PRINT "THIS NEVER WILL GET PRINTED SINCE A FOR LOOP "
40 PRINT "CANNOT STEP BACKWARDS!"
50 NEXT K
60 NEXT I

When you have successfully patched the first recorded version of
BASIC, you may wish to also SAVE BASIC a second time, writing
over the second unpatched BASIC which follows on the tape.
Before using the tape, be sure to remove the tape from the back
of the cassette to insure "write protection."

This procedure replaces an incorrect fix published in the,
Processor Technology ACCESS newsletter, Volume Two, Number One,
page six.

EXTENDED CASSETTE BASIC COMMAND
AND STATEMENT SUMMARY

This card may be detached from the staples and used for constant
reference. The information here is also contained in Appendix A, with
the page numbers on which a fuller description may be found. Ap-
pendix B is a function summary.
Underlined letters in the command or statement represent the shortest
possible abbreviation, which must be followed by a period. Functions
and some statements may not be abbreviated. An S following a
command description means that it may also be used as a statement
in programs; a C following a statement description means it may also
be used as a command.

COMMANDS

Command Description

APPEND file, T Reads a program stored on a cassette
file and appends it to the current pro-
gram.

BYE Leaves BASIC and returns to Solos. S
CLEAR Erases all variable definitions. S
CONT Continues execution of a program stop

ped with the MODE key or by a STOP
statement.

DEL Deletes all statements.
DEL n Deletes statement n.
DEL n1, n2 Deletes statements n1 through n2.
DEL n1, Deletes statements n1 through the last

statement.
DEL ,n2 Deletes the first statement through

statement n2. Note space before com-
ma.

EDIT n Allows the edit of statement n.
GET file {,C) {,T}

Reads a cassette file program, for ex-
ecution later. C (default) gets a semi
compiled file; T gets a text file.

LIST Lists the entire program.
LIST n Lists statement n.
LIST n1, n2 Lists statements n1 through n2.
LIST n1, Lists statements n1 through the last statement.
LIST ,n2 Lists the first statement through statement n2.
REN Renumbers the statements starting with 10 in

increments of 10.
REN n Renumbers the statements starting with n in

increments of 10.
REN n,i Renumbers the statements starting with n in

increments of i.
RUN Clears all variable definitions and exe-

cutes the program beginning with the
first line.

RUN n Executes the program beginning with
statement n and does not clear variable
definitions.

SAVE file {,C} {,T}
Saves the current program on a cassette
file of the name indicated. T saves the
program in text format. The default is C.

SCRATCH Deletes the entire program and clears
all variable definitions. S

SET DB=code Displays at the current cursor position
the character whose USACII code is sup-
plied. S

SET DS=speed Sets the video display speed to the value
indicated. S

SET IP=port# Sets the Solos/Cuter pseudo input port
to the value indicated. S

SET LL=Iength Sets the line length for BASIC output to
the value specified. S

SET ML=size Sets the memory limit for BASIC to the
number of bytes specified.

SET OP=port# Sets the Solos/Cuter pseudo output port
to the value indicated. S

TUOFF Turns off both tape motor relays. S

TUON unit# Turns on the specified tape motor relay.
S

XEQ file {,C} {,T}
Reads and executes a cassette file pro-
gram. Use C (default) for semi-compiled
files, T for text files.

STATEMENTS

Statement Description

CLOSE #file number1, #file number2, . . .
Closes the specified files so that they
cannot be accessed unless another FILE
statement requests access.

CURSOR {L} {,C}
Moves the cursor to line L, character
position C on the screen. If L or C is om-
mited, its value from the last CURSOR
statement is used. C

DATA constant1, constant2, . . .
Specifies numerical or string constants
that can be read by the READ statement.

DEF FNvariable (variable1, variable2, . . .) = exp
Defines a one-line function that eval-
uates an expression based on the values
of the variables in parentheses.

DEF FNvariable (variable1, variable2, . . .)
 . Defines a multi-line function that ex-
 . ecutes statements following using the
RETURN exp values of the variables in parentheses in
 . calculations and, when a RETURN state
 . ment is encountered, returns the value
FNEND of the expression on the same line.

ends the function definition.
DIM variable (dimension1, dimension2, . . .)

Defines a multi-dimensional numerical
array with the number of dimensions
specified. C

DIM string variable (size)
Declares the number of characters that
can be contained in the specified string
variable. C

END Terminates execution of the program.
ERRCLR Clears the error trap line number set by

the most recent ERRSET statement. C
ERRSET n When an error occurs, BASIC executes

statement n next. C
EXIT n Escapes from and terminates all current

FOR/NEXT loops. Statement n is exe-
cuted next.

FILE #file number; file name, access requested
{,access granted}

Requested read (1), write (2), or read/
write (3) access to the specified cassette
tape file. The file name is given by a
string expression, so if it is named di-
rectly, it must be enclosed in quotation
marks . .

FNEND Ends a function definition.
FOR variable = expression 1 TO expression 2 {STEP
interval} The value of expression1 is assigned to
 . the variable, then the statements
 . between FOR and NEXT are executed
 . repeatedly until variable equals ex-
 . pression2. After each iteration the var-
NEXT {var} iable is incremented by 1, or by the STEP

interval if given.
GOSUB n Executes the subroutine beginning at

statement number n. Execution con-
tinues with the statement following the
GOSUB statement.

GOTO n Transfers control to statement number
n.

IF expression THEN n
Executes statement n if the value of the
expression is true; otherwise, executes
the next statement in sequence.

IF expression THEN n1 ELSE n2
Executes statement n1 if the value of the
expression is true; otherwise, executes
statement n2.

IF expression THEN statement1: statement2: . . .
Executes statement1 , statement2, etc.
if the value of the expression is true;
otherwise, executes the next statement
in sequence. C

IF expression THEN statement1: statement2: . . . ELSE
statement 3:. . .

Executes the statements following THEN
if the value of the expression is true;
otherwise, executes the statements
following ELSE. C

IF expression THEN n ELSE statement1: statement2: . . .
Executes statement n if the value of the
expression is true; otherwise, executes
the statements following ELSE.

IF expression THEN statementl: statement2: . . . ELSE n
Executes the statements following THEN
if the value of the expression is true;
otherwise, executes statement n.

INPUT variable1, variable2 . . .
Accepts values from the terminal and
assigns them to variable1, variable2,
etc. C

INPUT "message". variable1, variable2 , . . .
Displays the message as a prompt and
then accepts values from the terminal,
assigning them to variable1, variable2,
etc. C

INPUT (characters, time) variable1, variable2 , . . .
Accepts values from the terminal and
assigns them to variable1, variable2,
etc. The user can only type the number
of characters indicated in parentheses
and has time (in tenths of a second) to
respond.

INPUT (characters, time) "message" ,variable1,
variable2, . . .

Displays the message as a prompt and
then accepts values from the terminal,
assigning them to variable1, variable2,
etc. The user can only type the number
of characters indicated in parentheses
and has time (in tenths of a second) to
respond.

{LET} variable1 = expression1 {,variable2 = expression2} . . .
Assigns the value of each expression to
the corresponding variable. The word
LET may be absent. C

NEXT {variable}
Ends a FOR loop.

ON expression ERRSET n1, n2, . . .
If the value of the expression is 1, sets
n1 as the statement to be executed
when an error occurs; if the value is 2,
sets n2 as the statement to be executed
when an error occurs; etc.

ON expression EXIT n1, n2, . . .
If the value of the expression is 1, tran-
fers control to statement n1 and termin-
ates all active FOR loops; if 2, transfers
to statement n2, etc.

ON expression GOSUB n1, n2, . . .
If the value of the expression is 1, ex-
excutes the subroutine starting at state-
ment n1 if the value is 2, executes the
subroutine starting at statement n2; etc.

ON expression GO TO n1, n2, . . .
If the value of the expression is 1, exe-
cutes statement n1 next; if it is 2, exe-
cutes statement n2, next; etc.

ON expression RESTORE n1, n2, . . .
If the value of the expression is 1, resets
the pointer in the DATA statements so
that the next value read is the first data
item in line n1 if it is 2, resets the
pointer to n2; etc.

OUT port, value
Places the specified value in the indi-
cated I/O port. C

PAUSE nexpr Delays further execution for nexpr
tenths of a second.

POKE location,value
Places the specified value in the spec-
ified memory location. C

PRINT ele, ele, ele {,} . . .
Displays numerical or string expression
elements, according to format elements.
Commas or semicolons may separate
elements or terminate the PRINT state-
ment.

PRINT #file number; expression1, expression2, . . .
Sequentially prints the values of expres-
sion1, expression2, etc. on the speci-
fied cassette tape file. C

READ variable1, variable2, . . .
Reads values from DATA statements and
assigns them to variable1, variable2, etc.

READ #file number; variable1, variable2, . . .
{:statement1: statement2: . . . }

Reads values from the specified file and
assigns them to variable1, variable2,
etc. If an end of file is read, statement1,
statement2, etc. will be executed (if
present).

REM any series of characters
The characters appear in the program
as remarks. The statement has no effect
on execution.

RESTORE (n) Resets the pointer in the DATA state-
ments to beginning. If n is present, the
pointer is set to the first data item in
statement n.

RETURN Returns from a subroutine.
RETURN exp Returns from a function. The value re-

turned is exp.
REWIND #file number 1, #file number 2, . . .

Rewinds the specified files.
SEARCH string expression 1, string expression 2,
variable

Searches the second string for the first
occurence of the first string specified.
The variable is set equal to the character
position which the first string was found.
If it is not found, the variable is set equal
to zero.

STOP Terminates execution of the program
and prints "STOP IN LINE n" where n is
the line number of the STOP statement.

WAIT exp1, exp2, exp3
The next statement is not executed until
the value in port exp1, ANDed with
exp2, is equal to exp3.

XEQ file {,T} {,C}
Reads the program from the specified
cassette tape file and begins execution.
The file name is a string expression so it
must be enclosed in quotation marks if
given directly. C reads a semi-compiled
format file. T reads a text format file.
The default is C.

Copyright © 1977 by Processor Technology Corporation.
All rights reserved.

