
Copyright 1977, Processor Technology Corporation Manual No. 727007

G A M E P A C 1

USER'S MANUAL

PROCESSOR TECHNOLOGY CORPORATION

7100 Johnson Industrial Drive
Pleasanton, CA 94566

I M P O R T A N T N O T I C E

This copyrighted software product is distributed on an individual sale basis for the
personal use of the original purchaser only. No license is granted herein to copy,
duplicate, sell or otherwise distribute to any other person, firm or entity. This software
product is copyrighted and all rights are reserved; all forms of the program are
copyrighted by Processor Technology Corporation.

T H R E E M O N T H L I M I T E D W A R R A N T Y

Processor Technology Corporation warrants this software product to be free from defects in
material and workmanship for a period of three months from the date originally purchased.

This warranty is made in lieu of any other warranty expressed or implied and is limited to
repair or replacement, at the option of Processor Technology Corporation, transportation and
handling charges excluded.

To obtain service under the terms of this warranty, the defective part must be returned, along
with a copy of the original bill of sale, to Processor Technology Corporation within the
warranty period.

The warranty herein extends only to the original purchaser and is not assignable or
transferable and shall not apply to any software product which has been repaired by anyone
other than Processor Technology Corporation or which may have been subject to alterations,
misuse, negligence, or accident, or any unit which may have had the name altered, defaced
or removed.

- i -

Copyright 1977, Processor Technology Corporation Manual No. 727007

G A M E P A C 1

Table of Contents

I. INTRODUCTION ... 1

II. GAMEPAC 1 INPUT ROUTINES .. 3

III. TARGET (TARG)

A. Mission... 8
B. Scoring... 8
C. Game Start and Action Speed.. 9
D. Aiming and Flight Direction... 9
E. Demonstration Mode .. 9
F. Sound... 9
G. Game Time .. 10
H. Extra Time.. 10
I. Other Commands... 10
J. Exit from TARGET program ... 10

IV. LIFE (LIFE)

A. Genetic Rules... 11
B. Operating Instructions .. 12
C. Pattern Storage .. 13
D. Generation Speed .. 13

V. PATTERN (PTRN)

A. Loading PATTERN from CUTS Tape 14

VI. ZING (ZING)

A. ZING Operation.. 15
B. Paddle Operation ... 15
C. Game Start... 16
D. Sol Parallel Port Switches .. 16
E. Patches .. 18

APPENDIX A SOLOS/CUTER Interface ... 19

1

©1977 Software Technology Corporation

I. INTRODUCTION

GAMEPAC 1 is a collection of four games designed to run on a Sol or other 8080 based
computer with a Processor Technology VDM-1 Video Display Module. GAMEPAC 1 is
distributed on cassette requiring a hardware cassette interface such as the Processor
Technology CUTS circuit board to read the programs into memory for execution. Although
these programs are designed to interface with either SOLOS/CUTER, CONSOL or other user
written surrogate, standard input routines are also provided.

All input to the games is via either the SOLOS/CUTER jump table (refer to the interface
specification in the appendix) or the standard input routines provided. All output from the games
is to the screen--either the Sol display or the VDM-1.

A. Hardware Requirements for All of the Games

1. All of the games require no more than 4K of RAM from location zero through
0FFFH.

2. All games are entered or re-entered at location zero.

3. All games require either the Sol display circuitry or a Processor Technology VDM-1
circuit board. The display scroll port must be either 0FEH or 0C8H.

4. The character generator chip number 6574 is suggested.

5. The video display switches should be set as follows:

1 2 3 4 5 6

Sol off off off on off on

VDM-1 off on on on on off

B. CUTS Cassette Tape Information

The games of GAMEPAC 1 are recorded using the Processor Technology CUTS/Kansas City
standard recording format. The tape is loaded using a Sol with SOLOS or CONSOL personality
module or a computer running under CUTER and a CUTS (Computer Users Tape Standard)
audio cassette board. The SOLOS/CUTER interface specifications in the appendix describe the
format of the tape so that a user written routine may be used to read the games into memory
from tape.

To load a game from the GAMEPAC 1 tape, rewind the tape, set the tape counter to zero and
advance the tape to just ahead of the counter indication number for the game to be loaded.
Make sure the tone and volume are adjusted correctly and the necessary cables are connected.

2

I. INTRODUCTION (cont.)

The following examples show the SOLOS/CUTER commands used to load and execute the
games.

XEQ (name)cr

Where: XEQ is a SOLOS/CUTER command which causes
the next (or named) program to be read from
tape into memory.

(name) is the name of the program to be loaded. (name)
is optional, and the next program on the tape
will be loaded if it is not used.

cr This is the carriage return key.

The game, which is a program, will be loaded into memory and run at location zero. It will then
display any necessary instructions on the screen.

For example:

XEQ TARG to play TARGET
XEQ LIFE to play LIFE
XEQ PTRN to play PATTERN
XEQ ZING to play ZING

"GET (name)cr" may also he used to load the tape.

After the program loads and the prompt character reappears on the screen, type "EX 0cr" to
execute the program.

If you have any trouble loading the tape, refer to the cassette operating procedures in the Sol
manual or the CUTS manual.

3

©1977 Software Technology Corporation

II. GAMEPAC 1 INPUT ROUTINES

All of the games use the same standard input routines from location 0-26.

The first time a game is executed, this input routine will be initialized. A description of this input
routine and the initialization procedures follow. If the games are used with either
SOLOS/CUTER, CONSOL or a compatible surrogate, no modification will be necessary.

A standard input routine will be selected automatically in the event that none of the above
routines are used.

An assembly listing of the standard input and initialization routines is on the following pages.

4

II. GAMEPAC 1 INPUT ROUTINES (cont.)

 0001 *
 0002 **
 0003 * *
 0004 * < GAMEPAC 1 INPUT ROUTINES > *
 0005 * *
 0006 **
 0007 *
 0008 *
 0009 * ALL OF THE GAMEPAC 1 PROGRAMS USE THE
 0010 * SOLOS/CUTER/STANDARD INPUT ROUTINE.
 0011 *
 0012 * THE ROUTINE SOURCE CODE/ASSEMBLY IS SHOWN
 0013 * BELOW AS IT APPEARS IN ALL GAMEPAC 1 GAMES.
 0014 *
 0015 * THE 'START' VALUE IN EACH PROGRAM WILL BE
 0016 * THE STARTING ADDRESS OF THE ACTUAL GAME,
 0017 * AND WILL BE UNDEFINED IN THE LISTING BELOW.
 0018 *
 0019 *
 0020 *
 0021 **
 0022 * *
 0023 * < SOLOS/CUTER AND STANDARD INPUT ROUTINES > *
 0024 * *
 0025 * VERSION 2.4 APRIL 1,1977 S. DOMPIER *
 0026 * *
 0027 **
 0028 *
 0029 *
 0030 * THIS PROGRAM MAY USE ONE OF THREE POSSIBLE
 0031 * INPUT ROUTINES. ON ENTRY TO THIS INITIALIZING
 0032 * ROUTINE, THE FIRST TWO BYTES POINTED TO BY
 0033 * REGISTERS HL ARE CHECKED TO DETERMINE IF
 0034 * THE EXECUTING PROGRAM IS 'SOLOS' OR 'CUTER'.
 0035 *
 0036 * WHEN A PROGRAM IS CALLED BY THE 'XEQ' OR 'EXEC'
 0037 * COMMAND FROM SOLOS/CUTER, REG HL IS SET TO THE
 0038 * FIRST ADDRESS OF SOLOS/CUTER. THE FIRST TWO
 0039 * BYTES OF SOLOS = 00 C3; THE FIRST TWO BYTES
 0040 * OF CUTER = 7F C3. IF THE DATA IN THE FIRST TWO
 0041 * BYTES POINTED TO BE REG HL MATCHES, AND THE LDA
 0042 * INSTRUCTION (3AH) AT SOLOS/CUTER ADDRESS xx1FH
 0041 * ALSO MATCHES THE INPUT ROUTINE ADDRESS OF
 0044 * SOLOS/CUTER IS INSERTED AT 'INADD' WHICH IS THE
 0045 * INPUT ROUTINE CALL ADDRESS.
 0046 *
 0047 *
 0048 * IF NO MATCH IS MADE, A STANDARD INPUT ROUTINE
 0049 * IS USED WITH THE FOLLOWING VALUES:
 0050 *
 0051 *
 0052 * STATUS PORT = 0
 0055 * DATA PORT = 1
 0054 * DAV MASK = 40H DATA AVAILABLE
 0055 *
 0056 *
 0057 *
 0058 * THERE IS ROOM TO ADD A 'CMA' INSTRUCTION
 0059 * TO COMPLEMENT THE INPUT STATUS WORD FOR
 0060 * ACTIVE LOW STATUS.
 0061 * (SEE THE STANDARD INPUT ROUTINE BELOW FOR
 0062 * ACTUAL VALUE ADDRESS INFORMATION.)
 0063 *
 0064 * TYPING 'ESC' (escape) WILL EXIT THE MAIN
 0065 * PROGRAM. IF SOLOS/CUTER HAS CALLED, A
 0066 * JUMP BACK TO SOLOS/CUTER 'RETRN' (xx04H)
 0067 * WILL BE MADE. THIS JUMP RETURNS TO THE

5

©1977 Software Technology Corporation

II. GAMEPAC 1 INPUT ROUTINES (cont.)

 0068 * SOLOS/CUTER MONITOR AND ISSUES A PROMPT.
 0069 * OTHERWISE THE DEFAULT RETURN JUMP ADDRESS
 0070 * WILL BE TAKEN. IT IS INITIALLY SET TO
 0071 * RETURN TO THE 'ALS8', ADDRESS 0E060H
 0072 *
 0073 * IF YOU ARE USING THE STANDARD INPUT ROUTINE
 0074 * AND WISH TO INSERT YOUR OWN EXIT ADDRESS,
 0075 * DO SO AT 'EXADD' ADDRESS 001AH-001BH.
 0076 * LSB - MSB
 0077 * (SEE EXIT ROUTINE BELOW.)
 0078 *
 0079 *
 0080 * TYPING 'DEL' WILL RESTART THE MAIN PROGRAM
 0081 * AT ITS STARTING ADDRESS
 0082 *
 0083 * A JUMP ADDRESS TO THE ACTUAL PROGRAM
 0084 * IS INSERTED AT 'IJMP' AT THE COMPLETION
 0085 * OF THIS INPUT INITILIAZION.
 0086 * THIS ALLOWS RESTARTING THE GAME FROM
 0087 * LOCATION ZERO (00).
 0088 *
 0089 *
 0090 *
 0091 *
 0092 **
 0093 *
 0094 *
 0095 *
 0096 * < INPUT ROUTINE EQUATES >
 0097 *
 007E 0098 DEL EQU 7FH DELETE KEY CODE
 001B 0099 ESC EQU 1BH ESCAPE KEY CODE
 00C3 0100 JMP EQU 0C3H JUMP INSTRUCTION CODE
 00CD 0101 CALL EQU 0CDH CALL INSTRUCTION CODE
 0004 0102 RETRN EQU 4 SOLOS/CUTER RETURN LOW ADDRESS
 0000 0103 NOP EQU 0 SOLOS FIRST BYTE
 007F 0104 MOVAA EQU 7FH CUTER FIRST BYTE
 003A 0105 LDA EQU 03AH SOLOS/CUTER INPUT FIRST BYTE
 001F 0106 LOWIN EQU 1FH SOLOS/CUTER INPUT LOW ADDRESS
 0107 *
 0108 *
 0109 *
 0110 XEQ 0 PROGRAM EXECUTE ADDRESS
0000 0111 ORG 0 ASSEMBLER ORIGINATE ADDRESS
 0112 *
 0113 *
 0114 *
 0115 * < INITIALIZE INPUT ADDRESS >
 0116 *
 0117 * IJMP = INIT2 - INITIALIZE INPUT ON PASS 1.
 0118 *
 0119 * AFTER THE INITIALIZATION PASS, IJMP = THE
 0120 * STARTING ADDRESS OF THE PROGRAM TO BE RUN.
 0121 *
 0122 *
0000 C3 0123 INIT DB JMP START JUMP
0001 27 00 0124 IJMP DW INIT2 PASS 1= INIT2 PASS 2= START
 0125 *
 0126 *
 0127 *
 0128 * < WAIT FOR KEYBOARD INPUT >
 0129 *
0003 CD OA 00 0130 INWAIT CALL INCHR CHECK IF INPUT
0006 CA 03 00 0131 JZ INWAIT FOR INPUT
0009 C9 0132 RET . WITH CHARACTER IN REG A
 0133 *
 0134 *
 0135 *
 0136 * < INPUT ROUTINE CALL >
 0137 *

6

II. GAMEPAC 1 INPUT ROUTINES (cont.)

000A CD 0138 INCHR DB CALL FIRST BYTE OF CALL INSTRUCTION
000B 1C 00 0139 INADD DW INPUT INPUT ROUTINE ADDRESS
0OOD C8 0140 RZ . NO INPUT
 0141 *
 0142 *
 0143 *
 0144 * < EXIT/RESTART CODE CHECK >
 0145 *
000E FE 1B 0146 RTEST CPI ESC ESCAPE KEY?
0010 CA 19 00 0147 JZ EXIT
0013 FE 7F 0148 CPI DEL DELETE KEY?
0015 CA 00 00 U 0149 JZ START START PROGRAM OVER
0018 C9 0150 RET . CHARACTER IN REG A
 0151 *
 0152 *
 0153 *
 0154 * < PROGRAM EXIT JUMP >
 0155 *
0019 C3 0156 EXIT DB JMP
001A 60 FO 0157 EXADD DW FORMS PROGRAM EXIT ADDRESS
 0158 *
 0159 *
 0160 *
 0161 * < STANDARD INPUT ROUTINE >
 0162 *
 0163 * THIS ROUTINE IS USED IF THE CALLING PROGRAM
 0164 * IS NOT SOLOS OR CUTER. THE DAV MASK AND PORTS
 0165 * MAY BF CHANGED AS REQUIRED FOR ANY INPUT VALUES.
 0166 * IF INPUT STATUS IS ACTIVE LOW, INSERT THE 'CMA'
 0167 * (2FH) INSTRUCTION AT THE 'NOP' ADDRESS 001EH BELOW
 0168 *
 0169 *
 0170 * ZERO FLAG IS SET IF NO INPUT RCV'D. (Z)
 0171 * ZERO FLAG IS RESET IF INPUT IS RCV'D. (NZ)
 0172 * CHARACTER IS RETURNED IN REG A.
 0173 *
 0174 * REGISTERS MODIFIED: A
 0175 *
0000 0176 STAT EQU 0 STATUS PORT
 0001 0177 DATA EQU 1 DATA PORT
 0040 0178 DAV EQU 40H DATA AVAILABLE MASK- ACTIVE HIGH
 007E 0179 PARITY EQU 7FH PARITY MASK
 E060 0180 FORMS EQU 0E060H EXIT ADDRESS
 0181 *
 0182 *
 0183 *
001C DB 00 0184 INPUT IN STAT STATUS PORT = O
 0185 *
001E 00 0186 NOP . INSERT 'CMA' (2FH) HERE
 0187 * FOR ACTIVE LOW STATUS
 0188 *
001E E6 40 0189 ANI DAV DATA AVAILABLE MASK = 40H
0021 C8 0190 RZ . NO INPUT
0022 DB 01 0191 INDATA IN DATA DATA PORT = 1
0024 E6 7F 0192 ANI PARITY STRIP PARITY
0026 C9 0193 RET . WITH CHARACTER IN REG A
 0194 *
 0195 *
 0196 *
 0197 **
 0198 *
 0199 *
 0200 *
 0201 * < INITIALIZE INPUT ADDRESS (SOLOS/CUTER) >
 0202 *
 0203 * THIS CODE CAN GO ANYWHERE; IT IS USED
 0204 * ONLY ONCE AND MAY BE OVERLAYED AFTER
 0205 * THE INPUT IS INITIALIZED.
 0206 *
 0207 * NOTE: TO FORCE STANDARD INPUT ROUTINE,

7

©1977 Software Technology Corporation

II. GAMEPAC 1 INPUT ROUTINES (cont.)

 0208 * EXEC 'IDONE'
 0209 *
 0210 *
0027 23 0211 INIT2 INX H CHECK SECOND BYTE (JMP)
0028 7E 0212 MOV A,M
0029 FE C3 0213 CPI JMP JMP INSTRUCTION?
002B C2 4A 00 0214 JNZ IDONE NO MATCH, USE STANDARD INPUT
002E 2B 0215 DCX H
002E 7E 0216 MOV A,M CHECK FIRST BYTE
0030 FE 00 0217 CPI NOP CHECK IF SOLOS: =ZERO
0032 CA 3A 00 0218 JZ SETUP YES
 0219 *
0035 FE 7F 0220 CPI MOVAA CHECK IF CUTER: =7FH
0037 C2 4A 00 0221 JNZ IDONE NOPE, USE STANDARD
 0222 *
 0223 *
003A 2E 1F 0224 SETUP MVI L,LOWIN SET SOLOS/CUTER INPUT >ADDR
003C 7E 0225 MOV A,M CHECK FOR 3AH
003D FE 3A 0226 CPI LDA SOLOS/CUTER INPUT FIRST BYTE
003E C2 4A 00 0227 JNZ IDONE NOPE, USE STANDARD
 0228 *
0042 22 0B 00 0229 SHLD INADD SET INPUT ROUTINE ADDRESS
 0230 *
 0231 *
 0232 * SET SOLOS/CUTER RETURN ADDRESS 023'
 0233 *
0045 2E 04 0234 MVI L,RETRN SOLOS/CUTER RETURN (xx04)
0047 22 1A 00 0235 SHLD EXADD INSERT INTO EXIT ROUTINE
 0236 *
 0237 *
 0238 * SET PROGRAM ADDRESS AT IJMP.
 0239 *
004A 21 00 00 U 0239 IDONE LXI H,START INSERT PROGRAM START ADDRESS
004D 22 01 00 0241 SHLD IJMP SET UP PROGRAM RESTART AT ZERO
0050 E9 0242 PCHL . GOTO PROGRAM
 0243 *
 0244 *
 0245 * < END OF INPUT INITIALIAZION ROUTINE >
 0246 **
 0247 *

CALL 00CD 0138
DATA 0001 0191
DAV 0040 0189
DEL 007F 0148
EORMS E060 0157
ESC 001B 0146
EXADD 001A 0235
EXIT 0019 0147
IDONE 004A 0214 0221 0227
IJMP 0001 0241
INADD 000B 0229
INCHR 000A 0130
INDAT 0022
INIT 0000
INIT2 0027 0124
INPUT 001C 0139
INWAI 0003 0131
JMP 00C3 0123 0156 0213
LDA 003A 0226
LOWIN 001F 0224
MOVAA 007E 0220
NOP 0000 0217
PARIT 007F 0192
RETRN 0004 0234
RTEST 000E
SETUP 003A 0218
STAT 0000 0184

8

III. TARGET (TARG)

(Version 2.4 January 7, 1977 S. Dompier)

TARGET is an animated Sol-VDM game with sound.

A. Mission

A movable photon missile is aimed and fired in an attempt to stop unmanned runaway
robot spaceships.

There are several types of spaceships containing dangerous cargoes of pesticides, DNA
experiments, artificial flavorings, TV commercials and so on. They should be stopped
before they reach a civilized area of the universe and endanger the populace.

Remote control of the missiles in flight is achieved by aiming the launching tube. The
ships (and their contents) are generated by random logic and follow no pattern.

If two ships should collide, the flight log as well as the most dangerous cargo on board
are jettisoned as a mass-seeking ion parachute which must be considered the most
dangerous hazard of all.

[Author's note: The game player may relate to the ships and missiles of TARGET
as objects personally imagined by him. The above scenario is
provided for those with an aversion to the destructive type games
who may otherwise mistake the robot spaceships as earthly in
origin. Aggression, still being a common human trait in 1977, is
better exercised with a zero-sum game than spent on the physical
real world. Besides--it's fun.]

B. Scoring

HITS:

BIG CARGO SHIPS 100 points

SMALL (& fast) SCOUT SHIPS 200 points

PARACHUTES 600 points (if you can hit them!)

Chain reaction multiple hits score extra!

MISSES:

ANY SHIP ESCAPING OFF-SCREEN -20 points

MISSILE MISSES (or wasted by hitting explosion) -30 points

9

©1977 Software Technology Corporation

III. TARGET (cont.)

Occasionally, an explosion will blow out the engines or destroy part of another nearby ship or
parachute, leaving parts of it floating in space. This space debris will remain until it is hit by a
missile or by another ship, the crash resulting in the generation of a parachute. A missile hitting
the debris will score.

C. Game Start and Action Speed

After the instructions are displayed on the screen, the game is started by typing one of the
numeric keys (1 - 9). This also determines the speed of play. The number keys may be used at
any time to change the action speed with 1 designating the fastest action.

D. Aiming and Flight Direction

Missile aiming and in-flight direction are controlled by pressing the "," key to aim left and the "."
key to aim right. (The "," keytop has a "<" and the "." keytop has a ">".)

There are five aiming positions: left, left-center, center, right-center and right. The missiles are
launched by typing any letter key or depressing the space bar. This keyboard arrangement is
the easiest to use.

As soon as the first missile has left the launching tube, another missile may be launched. The
directions of missiles already launched will be altered by the aiming position of the launching
tube.

The left and right aiming command keys may be changed if your keyboard layout makes the
standard keys undesirable. Place the ASCI I code (7 bits, MSB parity should be 0) for the keys
to be used as follows:

Left key: Address 0600H Currently 2CH (,)

060DH

Right key: Address 0607H Currently 2EH (.)

061CH

E. Demonstration (DEMO) Mode

A demonstration self-run mode may be initiated by typing "D" at the start of the game. The "D"
takes the place of a speed key (1 -9) to start the game. The game will run itself until stopped by
typing the "DEL" key. All aiming, launching and speed controls are enabled during the demo
mode, allowing for manual operation as the system "helps" the operator along!

F. Sound

TARGET is equipped with sound-effects. Place any AM radio near the computer and run the
demo mode. Adjust the radio dial and the radio itself in relation to the computer until a good
sound is found. Small ships, big ships, parachutes,

10

III. TARGET (cont.)

and especially explosions should all be distinctive. For the best sound from a Sol, place the
radio next to the center of the left side.

G. Game Time

During play, "Time" will flash and a countdown will appear at the top of the screen when eight
seconds of play time remain. If the score is 4000 or greater, "extra time" goes into effect, and
20 extra seconds of play time are provided.

When the game is over, (TIME = 0), the instructions will be displayed on the screen and the
score information will remain until a new game is started by typing one of the speed keys (1 - 9).
If the current score is greater than the previous high score, it will become the "NEW HIGH
SCORE". The high score may be cleared by typing "R" before starting a new game.

H. Extra Time

The thousands digit in the score is used to determine whether "extra time" is to be initiated.
This value may be altered to any digit (1 - 9) by placing the ASCII value of the desired digit at
location D02H in memory. For example, if 2000 is to be used as the minimum score to earn
extra time, place 32Hex at location D02H in memory.

I. Other Commands

If the "DEL" (delete - 7FH) is typed at any time, the game will restart.

There are two commands which are not displayed on the screen. One is a super slow speed
activated by typing "%" (shift-5). To resume normal speeds, type any numeric key.

The other command is a continuous run mode which is activated by typing Control-C (03H)
either before or during the game action. The game will then run continuously until stopped by
typing the "DEL" key.

J. Exit from TARGET program

An exit from TARGET is provided by typing "ESC" (1BH), ("ALT" on some keyboards). See the
standard SOLOS/CUTER input routine for complete information.

11

©1977 Software Technology Corporation

IV. LIFE (LIFE)

(version 2.3 January 7, 1977 S. Dompier)

The game of LIFE was originally described in SCIENTIFIC AMERICAN magazine, October,
1970, in an article by Martin Gardner. The game was originated by John Conway of Cambridge
University, England.

The computerized version of LIFE can be found on many computer systems--in many cases
with Teletype print routines. This version, using the Sol computer's video display capabilities or
the VDM-1 Video Display Module with other computers, allows initial patterns to be composed
directly on-screen and instant visualization of each generation as it is created. In addition,
patterns may be stored and recalled from seven memory pattern registers. The generation
speed may be controlled from the console.

A. Genetic Rules

Cells (organisms, ducks, people, plants, etc.) reproduce, exist or die according to certain
genetic laws. Conway derived the genetic law of the game of LIFE from the following
criteria:

1. There should be no initial patterns for which there is a simple proof
that the population can grow without limit.

2. There should be initial patterns that apparently do grow without limit.

3. There should be simple initial patterns that grow and change for a
considerable period of time before coming to an end in one of three
possible ways:

a. fading away completely (no life)

b. becoming stable (no change in pattern or population)

c. a pattern oscillates in an endless cycle of two or more
periods.

Think of each cell as being a square of a checkerboard. A celI may be either empty (shown
as a space [no *] on the screen and in the following examples) or living (shown as an * both
on the screen and in the examples). In the following examples, a '+' indicates an empty cell
which is becoming a living cell.

1 2 3

4 * 5

6 7 8

12

IV. LIFE (cont.)

SURVIVALS Each live cell with TWO or THREE live neighbors
will survive for the next generation.

 * * These cells
* * * * * all survive.

DEATHS Each cell with FOUR or MORE live neighbors will die from
over-population.

*
 * * - This cell dies (4 neighbors)

* *

Each cell with ONE or NO live neighbors will die from
isolation.

* Both of these cells die from isolation,
* each having only one neighbor.

BIRTHS Each empty cell with EXACTLY THREE live neighbors is a
birth cell and a new live cell will appear at the next generation.

 *
* + * = birth - three neighbors

Note: Births and deaths occur simultaneously.

Don't count a new cell until next generation.

Generation 1 Generation 2

 + * (+ = birth - had three neighbors)

 * * * = x * x = * (x = death - only one neighbor)

 + *

B. Operating Instructions

In this version of LIFE you have a choice of either a flat world or a round world display.

FLAT WORLD - Cells on the edge of the display do not have neighbors past the edge, and
any births that occur there immediately fall off and are not counted. In
computing the count of neighbors, cells past the edge are considered
empty. This is similar to a petri dish.

ROUND WORLD - Presented here as a flat surface projection, cells on the edge of the
display have neighbors at the opposite edge of the display (top-bottom;
left-right). If a pattern is moving off the edge of the display, it will continue
at the opposite side.

13

©1977 Software Technology Corporation

IV. LIFE (cont.)

The round world representation is more representative of our Earth, and it
usually yields more interesting pattern activity.

C. Pattern Storage

A pattern may be stored and recalled from seven memory pattern registers. When the question
is asked, type the appropriate register number (1 - 7) to recall a previous pattern. The pattern
stored in that register will be copied to the screen. The pattern may then be 'activated' by typing
a speed key (1 - 9 and 0) or modified by the edit functions and then run.

When the question is asked, type the register number (1 - 7) in which to save an initial or
modified pattern. The pattern will be saved after the numeric (speed) key is typed. (Note: If you
type 'DEL' to start over before the pattern has been run, no register storage will occur.)
There are seven preset patterns in register storage. When the LIFE program is first loaded from
tape, get and run these patterns in both the round and flat world modes. This provides
familiarity as well as examples of some of the possible LIFE activities.

D. Generation Speed

The time between each generation may be controlled by typing a speed key (1 - 9 and 0). 1 is
the fastest and 9 is the slowest. Typing '0' (zero) will stop the generation activity to allow
extended study of a pattern.

The pattern may then be SINGLE STEPPED by typing the space bar. Typing a speed key will
resume automatic generations.

Typing the 'DEL' key will restart the LIFE program.

Typing the 'ESC' key will exit from the program.

14

V. PATTERN (PTRN)

PATTERN is a pattern generating program for use with the Sol computer or a computer with a
VDM-1 Video Display Module. The patterns are generated in a kaleidoscopic format using a
horizontal and a vertical value as the initial input data.

The pattern may be selected from a possible list of 256 different patterns. Each combination of
vertical and horizontal values will produce a unique pattern. There is also an automatic pattern
mode which generates a sequence of some of the more interesting patterns.

The initial speed of PATTERN change is selected by typing any key. This key also starts the
program. The binary value of the key used to start the pattern is used as a timer; the lower the
value the faster the rate of change. The ASCII bias (30H) is removed from the speed key used,
and the resulting value is decremented by 1. Therefore, the fastest speed would be selected by
typing the number "1". The space bar produces a very slow rate of change. The number keys
(1 - 9) produce a good range of speeds, with the number "9" being quite slow.

The program may be restarted by typing the "DEL" key, or by restarting the program at location
zero. Typing the "ESC" key will exit from the PATTERN program.

A. Loading PATTERN from CUTS Tape

Set the GAMEPAC 1 tape so that PTRN is the next program on the tape, and read the tape
using the XEQ command, i.e., XEQ PTRN or just XEQ.

PATTERN will then load and run, printing instructions on the screen. The hexadecimal value of
the numbers typed for the pattern data is represented as an eight bit word on the screen and is
a good way to become familiar with the hex numbering system:
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

15

©1977 Software Technology Corporation

VI. ZING (ZING)

Written by: Terry L. Todd May 1976
Revised by: Steven Dompier June 3, 1976
Revised for SOLOS/CUTER/STANDARD July 5, 1977

ZING is a ping-pong type game played using a Processor Technology VDM-1 Video Display
Module or a Sol computer.

When using ZING with a Sol, a switch bank must be constructed in order to play the game.
Details and a schematic are provided in the following pages.

If the computer is other than a Sol, a switch bank may be constructed incorporating a parallel
port; however, the normal mode of play will use the front panel sense switches.

A. ZING Operation

Two paddles move up and down the screen sides and return any ball that hits them. Balls
are generated at random from the center of the screen, and up to five balls may be in play at
any one time. If all five balls have been returned, the balls will move faster. The balls will
gain momentum each time all five balls are returned until a maximum speed is attained. As
soon as any ball is missed, the initial slower speed is restored.

B. Paddle Operation

The left four sense switches control the left paddle, and the right four switches control the
right paddle. The paddles are positioned up or down according to the binary setting of each
player's four switches.

LEFT PADDLE RIGHT PADDLE

DATA LINE: D7 D6 D5 D4 : D3 D2 D1 D0

SWITCH: A15 A14 A13 A12 : A11 A10 A9 A8

ROW: 8 4 2 1 : 8 4 2 1

Row (above) specifies the row at which the Paddle is located. The row is selected by the
binary value of all four switches. The top row (0) is accessed by turning all four switches off.
Row 1 would require a switch setting of 0001. Row 3 would have both the one switch and
the two switch on, giving a total value of three (0011), and so on, counting in binary, until the
last row (15) has all four switches turned on: 1111 or F hexadecimal).

16

VI. ZING (cont.)

C. Game Start

The switch settings at the start of the game are used to determine two modes of play. If the
left player's "8" switch is on when the game starts, hexadecimal row numbering will be
displayed at the sides of the screen. If the right player's "1" switch is on at the beginning,
the game will run continuously until stopped by pushing the 'DEL' key to restart the game. If
the right player's "1" switch is off at the start, the game will declare a winner when either
player scores 21 points. The game may then be restarted by pushing the 'DEL' key.

SWITCH A15 up = Display hex numbering on screen side

SWITCH A15 down = No numbers

SWITCH A8 up = Continuous game - No stop at 21

SWITCH A8 down = Winner at 21

The momentum of the game increases each time both players have returned all five balls
with no misses!

Run and restart game at location zero.

Type 'DEL' to restart game anytime.

Type 'ESC' to exit from the program.

D. Sol Parallel Port Switches

A bank of eight switches (or two bank's of four switches--one bank for each player) are
required to play ZING.

These switches are connected to the parallel port at the rear of the Sol (connector J2M.
Use SPDT type switches without a middle "off" position. Connect the switches using a
DB-25 connector to mate with the parallel port connector J2 on the Sol. Provide enough
connecting wire so that the switches may be positioned conveniently for play.

Refer to the Sol manual for the parallel port pin-out information, and see the schematic
(Figure 1) for the correct hook-up of the switches.

If you wish to use external switches with a computer other than a Sol, construct the switch
bank(s) as shown and connect to a parallel port using the lines indicated.

On parallel ports other than the Sol, +5 volts must be obtained to power the switches. Notice
that this is obtained from pin 3 on the Sol J2 connector.

17

©1977 Software Technology Corporation

VI. ZING (cont.)

Figure 1

18

VI. ZING (cont.)

E. Patches

The GAMEPAC 1 programs use the SOLOS/CUTER or standard input routine and
determine if the computer running the program is a Sol using SOLOS, some other computer
using CUTER, or something else. The information below will allow you to modify the
program for different combinations, such as using external sense switches with the Sol
running SOLOS or some other computer running CUTER and using an external switch
bank.

If the computer is a Sol, the parallel port (FD) is used for the switch bank input. If the
computer is not a Sol running SOLOS, the sense switch port (FF) is used. To change this
input port, first run the program to initialize the input routines, then stop the computer and
make the patches needed, then restart ZING at location zero. The new port address wiII
then be used.

The switch bank input port used is loaded from address 0027H. Change this byte if
necessary.

19

©1977 Software Technology Corporation

APPENDIX A

SOLOS/CUTER Interface Specifications

The SOLOS/CUTER interface is based on:

1. A predefined set of 'pseudo' I/O ports allowing
software compatibility and providing an easy means
of supporting any I/O device.

2. A well defined set of register usage conventions.

3. A system jump table of entry points.

4. A defined tape format including headers and CRC
characters.

Both SOLOS and CUTER observe and support these specifications
such that any program written using this interface will function
(except for specific device dependencies) under the control of
either SOLOS or CUTER. A part of the interface specifications
also allows a user written SOLOS/CUTER surrogate. Such a
surrogate, when properly written, will allow a program written
for SOLOS/CUTER to function with the surrogate.

The first aspect of the interface is that of the pseudo ports.
The basic SOLOS/CUTER interface allows the support of four
'pseudo' I/O ports (0 - 3). These pseudo ports are logical
ports providing a reference for the program only. System input
(keyboard) and output (display) are directed via these pseudo
ports. The STANDARD definition for pseudo ports is:

Pseudo Port Input Output

0 Keyboard VDM Display
1 Serial input Serial output
2 Parallel input Parallel output
3 User defined input User defined output

These pseudo ports allow device independent I/O. Provided that
device dependent character sequences are not used, an I/O
request to pseudo port 0 appears to the requesting program to be
the same as a request to pseudo port 1, 2 or 3. What this means
is that, although four pseudo ports are defined in the interface
specifications, a user written surrogate would not need to
decode pseudo ports.

20

Appendix A (cont.)

The second aspect of the SOLOS/CUTER interface is the defined
register usage. Each of the system entry points has specific
register requirements which will be discussed later.

Whenever a program is executed via SOLOS/COTTER the stack
pointer, the stack, and registers HL are defined as follows:

1. The Stack Pointer (register SP) is valid and offers a
useable stack. The size of this stack is not specified
but should be adequate for at least a few calls. The
executed program is expected to establish its own stack;
however, some stack should be available.

2. The stack itself should be established such that:

(a) A "REV instruction can be used as an exit by the
executing program.

(b) The locations at Stack Pointer -1 and -2 in memory
contain the address of the executed program itself.
This information can be accessed by machine code
similar to:

LXI H,-1 A constant minus one.
DAD SP HL=SP-1 now.
MOV A,M A=our own high address.

Code such as this can be used to allow a routine to
be made self-relocating to a 256 byte boundary.

3. Registers HL contain the address of the SOLOS/CUTER jump
table. Because this jump table may be located at any 256
byte boundary in memory, register L will be zero.
Register H can then be used to alter the executing program
accordingly. As noted later, the jump table also provides
an indication whether the program is executing on a Sol or
other computer.

The third aspect of the SOLOS/CUTER interface is the jump table.
By making all system requests via this jump table, an executed
program can be made compatible between SOLOS, CUTER or other
properly written surrogate. The jump table is described on the
following page. A more complete description is contained in the
SOLOS/CUTER User's Manual.

21

Appendix A (cont.)

SOLOS/CUTER JUMP TABLE

Address Label Length Brief Description

xx00 START 1 This byte allows power-on reset for
SOLOS. It is 00 hex on a Sol; 7F hex
on other than a Sol.

xx01 INIT 3 This is a "JMP" to the power-on reset.
xx04 RETRN 3 Enter at this point to return control

from an executing program.

xx07 FOPEN 3 Byte access file open.

xx0A FCLOS 3 Byte access file close.

xx0D RDBYT 3 Byte access read one byte.

xx10 WRBYT 3 Byte access write one byte.

xx13 RDBLK 3 Read an entire file into memory.

xx16 WRBLK 3 Write an entire file from memory.

xx19 SOUT 3 Standard character output routine. This
must be an "LDA" pointing to the byte
containing the current system output
pseudo port value.

xx1C AOUT 3 Character output to pseudo port specified
in register "A".

xx1F SINP 3 Standard character input routine. This
must be an "LDA" pointing to the byte
containing the current system input
pseudo port value.

xx22 AINP 3 Character input to pseudo port specified
in register "A".

The most often used routines are: RETRN, SOUT and SINP. Other entry
points may or may not be used.

22

Appendix A (cont.)

JUMP TABLE INPUT ENTRY POINTS

SINP address xx1F

This entry point will set register "A" to the current
system input pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AINP" described below.

AINP address xx22

This entry point is used to input one character or status
information from any pseudo port. On entry register "A"
indicates the desired pseudo port. Because this entry
point is a combination status/get-character routine, it
is the user's responsibility to interpret return flags
properly. When a character is not available, the zero
flag will be set. When a character is available, the
zero flag will be reset and the character will be
returned in the "A" register. As an example, the
following code will wait for a character to be entered:

LOOP CALL SINP get status or the character
 JZ LOOP status says character not
 available yet
 character is in register "A"

JUMP TABLE OUTPUT ENTRY POINTS

SOUT address xx19

This entry point will set register "A" to the current
system output pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AOUT" described below.

AOUT address xx1C

This entry point is used to output the character in the
"B" register to the pseudo port specified by the value in
the "A" register. On return, the PSW and register "A"
are undefined. All other registers are as they were on
entry. A user written output routine (AOUT surrogate)
may buffer or delay the output as required for the
supported device.

23

Appendix A (cont.)

The fourth aspect of the SOLOS/CUTER interface is the format in
which the data is recorded on tape. When data is written to
tape it is referred to logically as a "file". Each file has its
own header which describes the file. On cassette tape, each
header is followed by the file itself. The file itself is
written to tape in segments of 1 to 256 bytes. Each segment is
immediately followed by a Cyclic Redundancy Check character (the
CRC). The following is the general format of one file on
cassette tape:

Where:

A. Preamble

Preceding every file header is a special preamble. This
is a series of at least ten nulls (zeroes) followed by a
one (01 hex). This special sequence, and only this
sequence, indicates a probable file header follows.

B. File Header

This is the 16 byte file header. The layout of a file
header is:

NAME ASC 'ABCDE' A 5 character file name.
 DB 0 Should always be zero.
TYPE DB 'B'+80H File type character. If bit
 7=1, this is a non-executable
 data file.
SIZE DW LENGTH Number of bytes in file.
ADDR DW FROM Address file is to be read into
 or written from.
XEQ DW EXEC Execution beginning address.
 DS 3 Space not currently used.

C. File Header CRC

This is the CRC character for the file header. If, when
reading a file header, the CRC character is not correct,
then the file header is to be ignored. A search would
then be made for a new preamble (A above).

24

Appendix A (cont.)

D. File Segment First

This is the first segment of the file itself. A segment
is from 1 to 256 bytes. In this example, this segment is
256 bytes.

E. File Segment One CRC

This is the CRC character for the preceding segment-- in
this example, the preceding 256 bytes.

F. File Segment Last

This is the last segment of the file. In this example,
this is 44 bytes. Therefore, the length of this file is
256+44=300 bytes.

G. File Segment Last CRC

This is the CRC character for the preceding segment--in
this example, the preceding 44 bytes.

H. Interfile GAP

This is a gap between files and is typically a clear
carrier for about five seconds.

CRC Computation

The CRC character is computed for each segment or header. The
following code performs the CRC computation assuming: Register
"A" is the character just written to tape, and Register "C" is
the final CRC. Register C should be set to zero prior to
writing the first character of a segment. After writing the
last character of a segment and executing this code, Register
"C" is the CRC character for this segment.

An 8080 Subroutine to do CRC Computation

DOCRC EQU $ A=NEXT character and C=CRC
 SUB C
 MOV C,A
 XRA C
 CMA
 SUB C
 MOV C,A
 RET

